
Non-Blocking

Communications

Deadlock

1

5
2

3

4

0 Communicator

Completion

The mode of a communication determines

when its constituent operations complete.
– i.e. synchronous / asynchronous

The form of an operation determines when the

procedure implementing that operation will

return
– i.e. when control is returned to the user program

Blocking Operations

Relate to when the operation has completed.

Only return from the subroutine call when the

operation has completed.

These are the routines you used thus far
– MPI_Ssend

– MPI_Recv

Non-Blocking Operations

Return straight away and allow the sub-program to

continue to perform other work. At some later time the

sub-program can test or wait for the completion of the

non-blocking operation.

Beep!

Non-Blocking Operations

All non-blocking operations should have

matching wait operations. Some systems

cannot free resources until wait has been

called.

A non-blocking operation immediately followed

by a matching wait is equivalent to a blocking

operation.

Non-blocking operations are not the same as

sequential subroutine calls as the operation

continues after the call has returned.

Non-Blocking Communications

Separate communication into three phases:

Initiate non-blocking communication.

Do some work (perhaps involving other

communications?)

Wait for non-blocking communication to

complete.

Non-Blocking Send

1

5
2

3

4

0 Communicator

Non-Blocking Receive

1

5
2

3

4

0 Communicator

Handles used for Non-blocking Comms

datatype same as for blocking
(MPI_Datatype or INTEGER).

communicator same as for blocking
(MPI_Comm or INTEGER).

request MPI_Request or INTEGER.

A request handle is allocated when a

communication is initiated.

Non-blocking Synchronous Send

 C:

int MPI_Issend(void* buf, int count,

 MPI_Datatype datatype, int dest,

 int tag, MPI_Comm comm,

 MPI_Request *request)

int MPI_Wait(MPI_Request *request,

 MPI_Status *status)

 Fortran:

 MPI_ISSEND(buf, count, datatype, dest,

 tag, comm, request, ierror)

 MPI_WAIT(request, status, ierror)

Non-blocking Receive

 C:

int MPI_Irecv(void* buf, int count,

 MPI_Datatype datatype, int src,

 int tag, MPI_Comm comm,

 MPI_Request *request)

int MPI_Wait(MPI_Request *request,

 MPI_Status *status)

 Fortran:

 MPI_IRECV(buf, count, datatype, src,

 tag, comm, request, ierror)

 MPI_WAIT(request, status, ierror)

Blocking and Non-Blocking

Send and receive can be blocking or non-

blocking.

A blocking send can be used with a non-

blocking receive, and vice-versa.

Non-blocking sends can use any mode -

synchronous, buffered, standard, or ready.

Synchronous mode affects completion, not

initiation.

Communication Modes

NON-BLOCKING OPERATION MPI CALL

Standard send MPI_ISEND

Synchronous send MPI_ISSEND

Buffered send MPI_IBSEND

Ready send MPI_IRSEND

Receive MPI_IRECV

Completion

 Waiting versus Testing.

 C:

 int MPI_Wait(MPI_Request *request,

 MPI_Status *status)

 int MPI_Test(MPI_Request *request,

 int *flag,

 MPI_Status *status)

 Fortran:

 MPI_WAIT(handle, status, ierror)

 MPI_TEST(handle, flag, status, ierror)

Multiple Communications

Test or wait for completion of one message.

Test or wait for completion of all messages.

Test or wait for completion of as many

messages as possible.

Testing Multiple Non-Blocking Comms

 in

 in

 in

Process

Combined Send and Receive

Specify all send / receive arguments in one call
– MPI implementation avoids deadlock

– useful in simple pairwise communications patterns, but not as

generally applicable as non-blocking

int MPI_Sendrecv(void *sendbuf, int sendcount, MPI_Datatype sendtype,

 int dest, int sendtag,

 void *recvbuf, int recvcount, MPI_Datatype recvtype,

 int source, int recvtag,

 MPI_Comm comm, MPI_Status *status);

MPI_SENDRECV(sendbuf, sendcount, sendtype, dest, sendtag,

 recvbuf, recvcount, recvtype, source, recvtag,

 comm, status, ierror)

Exercise

 Rotating information around a ring

See Exercise 4 on the sheet

Arrange processes to communicate round a ring.

Each process stores a copy of its rank in an integer

variable.

Each process communicates this value to its right

neighbour, and receives a value from its left neighbour.

Each process computes the sum of all the values

received.

Repeat for the number of processes involved and print

out the sum stored at each process.

Possible solutions

Non-blocking send to forward neighbour
– blocking receive from backward neighbour

– wait for forward send to complete

Non-blocking receive from backward neighbour
– blocking send to forward neighbour

– wait for backward receive to complete

Non-blocking send to forward neighbour

Non-blocking receive from backward neighbour
– wait for forward send to complete

– wait for backward receive to complete

Notes

Your neighbours do not change
– send to left, receive from right, send to left, receive from right, …

You do not alter the data you receive
– receive it

– add it to you running total

– pass the data unchanged along the ring

You must not access send or receive buffers

until communications are complete
– cannot read from a receive buffer until after a wait on irecv

– cannot overwrite a send buffer until after a wait on issend

