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Hardware design

Image from Colfax training material



Pipeline

• Simple five stage pipeline:

1. Instruction fetch

• get instruction from instruction cache

2. Instruction decode and  register fetch

• can be done in parallel

3. Execution 

• e.g. in ALU or FPU

4. Memory access

5. Write back to register



Hardware issues

Three major problems to overcome:

• Structural hazards

• two instructions both require the same hardware resource at the same 

time

• Data hazards

• one instruction depends on the result of another instruction further 

down the pipeline

• Control hazards

• result of instruction changes which instruction to execute next (e.g. 

branches)

Any of these can result in stopping and restarting the pipeline, and 

wasting cycles as a result.



Hazards

• Data hazard: result of one instruction (say addition) is required as 

input to next instruction (say multiplication).

• This is a read-after-write hazard (RAW) (most common type)

• can also have WAR (concurrent) and WAW (overwrite problem)

• When a branch is executed, we need to know the result in order to 

know which instruction to fetch next. 

• Branches will stall the pipeline for several cycles 

• almost whole length of time branch takes to execute.

• Branches account for ~10% of instructions in numeric codes

• vast majority are conditional 

• ~20% for non-numeric



Locality

• Almost every program exhibits some degree of locality.

• Tend to reuse recently accessed data and instructions.

• Two types of data locality:

1. Temporal locality

A recently accessed item is likely to be reused in the near future.

e.g. if x is read now, it is likely to be read again, or written, soon.

2. Spatial locality

Items with nearby addresses tend to be accessed close together 

in time.  

e.g. if y[i]is read now, y[i+1] is likely to be read soon.



Cache

• Cache can hold copies of data from main memory locations.

• Can also hold copies of instructions.

• Cache can hold recently accessed data items for fast re-access.

• Fetching an item from cache is much quicker than fetching from 
main memory.

• 3 nanoseconds instead of 100.

• For cost and speed reasons, cache is much smaller than main 
memory.

• A cache block is the minimum unit of data which can be 
determined to be present in or absent from the cache.

• Normally a few words long: typically 32 to 128 bytes.

• N.B. a block is sometimes also called a line.



Cache design

• When should a copy of an item be made in the 
cache?

• Where is a block placed in the cache?

• How is a block found in the cache?  

• Which block is replaced after a miss?

• What happens on writes?  

• Methods must be simple (hence cheap and fast 
to implement in hardware). 
• Always cache on reads

• If a memory location is read and there isn’t a copy in the cache 
(read miss), then cache the data. 

• What happens on writes depends on the write strategy 



Cache design cont.
• Cache is organised in blocks.

• Each block has a number

• Simplest scheme is a direct mapped cache

• Set associativity
• Cache is divided into sets (group of blocks typically 2 

or 4)

• Data can go into any block in its set.

• Block replacement
• Direct mapped cache there is no choice: replace the 

selected block.

• In set associative caches, two common strategies:

• Random: Replace a block in the selected set at 
random

• Least recently used (LRU): Replace the block in set 
which was unused for longest time.

• LRU is better, but harder to implement.
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Cache performance
• Average memory access cost =

hit time + miss ratio x miss time

• Cache misses can be divided into 3 categories:

Compulsory or cold start

• first ever access to a block causes a miss

Capacity

• misses caused because the cache is not large enough to hold all data

Conflict

• misses caused by too many blocks mapping to same set.

time to load data 

from cache to CPU

proportion of accesses 

which cause a miss

time to load data from 

main memory to cache



Cache levels

• One way to reduce the miss time is to have more than 

one level of cache.

Processor

Level 1 Cache

Main Memory

Level 2 Cache



Cache conflicts
• Want to avoid cache conflicts

• This happens when too much related data maps to the same cache set.

• Arrays or array dimensions proportional to (cache-size/set-size) can cause 
this.

• Assume a 1024 word direct mapped cache

REAL A(1024), B(1024), C(1024), X

COMMON /DAT/ A,B,C    ! Contiguous

DO I=1,1024

A(I) = B(I) + X*C(I)

END DO

• Corresponding elements map to the same block so each access 
causes a cache miss.

• Insert padding in common block to fix this



Conflicts cont.
• Conflicts can also occur within a single array (internal)

REAL A(1024,4), B(1024)

DO I=1,1024

DO J=1,4

B(I) = B(I) + A(I,J)

END DO

END DO

• Fix by extending array declaration

• Set associated caches reduce the impact of cache conflicts.

• If you have a cache conflict problem you can:

• Insert padding to remove the conflict

• change the loop order

• unwind the loop by cache block size and introduce scalar temporaries to access each 
block once only

• permute index order in array (Global edit but can often be automated).  



Cache utilisation

• Want to use all of the data in a cache line

• loading unwanted values is a waste of memory bandwidth.

• structures are good for this

• Or loop over the corresponding index of an array.

• Place variables that are used together close together

• Also have to worry about alignment with cache block 

boundaries.

• Avoid “gaps” in structures

• In C structures may contain gaps to ensure the address of each 

variable is aligned with its size. 



Memory structures

• Why is memory structure important?

• Memory structures are typically completely defined by the 
programmer.

• At best compilers can add small amounts of padding.

• Any performance impact from memory structures has to be addressed 
by the programmer or the hardware designer.

• With current hardware memory access has become the most 
significant resource impacting program performance.

• Changing memory structures can have a big impact on code 
performance.

• Memory structures are typically global to the program

• Different code sections communicate via memory structures.

• The programming cost of changing a memory structure can be very 
high.



AoS vs SoA
• Array of structures (AoS)

• Standard programming practise often group together data items in object like 
way:

struct {

int a; int b; int c;

} struct coord;

coord particles[100];

• Iterating over individual elements of structures will not be cache friendly

• Structure of Arrays (SoA)
• Alternative is to group together the elements in arrays:
struct {

int a[100]; int b[100]; int c[100];

} struct coords;

coords particles;

• Which gives best performance depends on how you use your data
• FORTRAN complex numbers is example of this

• If you work on real and imaginary parts of complex numbers separately then 
AoS format is not efficient



Memory problems

• Poor cache/page use

• Lack of spatial locality

• Lack of temporal locality

• cache thrashing

• Unnecessary memory accesses

• pointer chasing

• array temporaries

• Aliasing problems

• Use of pointers can inhibit code optimisation 



Arrays

• Arrays are large blocks of memory indexed by integer index

• Multi dimensional arrays use multiple indexes (shorthand)

REAL  A(100,100,100) REAL A(1000000)

A (i,j,k) =  7.0 A(i+100*j+10000*k) = 7.0

float A[100][100][100]; float A[1000000];

A [i][j][k] =  7.0 A(k+100*j+10000*i) = 7.0

• Address calculation requires computation but still relatively cheap.

• Compilers have better chance to optimise where array bounds are known 
at compile time.

• Many codes loop over array elements

• Data access pattern is regular and easy to predict

• Unless loop nest order and array index order match the access pattern 
may not be optimal for cache re-use.



Reducing memory accesses

• Memory accesses are often the most important limiting 

factor for code performance.

• Many older codes were written when memory access was 

relatively cheap.

• Things to look for:

• Unnecessary pointer chasing

• pointer arrays that could be simple arrays

• linked lists that could be arrays.

• Unnecessary temporary arrays.

• Tables of values that would be cheap to re-calculate.



Vector temporaries

• Old vector code often had many simple loops with intermediate results in 
temporary arrays

REAL V(1024,3), S(1024), U(3)

DO I=1,1024

S(I) = U(1)*V(I,1)

END DO

DO I=1,1024

S(I) = S(I) + U(2)*V(I,2)

END DO

DO I=1,1024

S(I) = S(I) + U(3)*V(I,3)

END DO

DO J=1,3

DO I=1,1024

V(I,J) = S(I) * U(J)

END DO

END DO



• Can merge loops and use a scalar
REAL V(1024,3), S, U(3)

DO I=1,1024

S = U(1)*V(I,1) + U(2)*V(I,2) + U(3)*V(I,3)

DO J=1,3

V(I,J) = S * U(J)

END DO

END DO

• Vector compilers are good at turning scalars into vector 
temporaries but the reverse operation is hard.



Problems with writes

• Array initialization
• Large array initializations may be particularly slow when using 

write allocate caches.

• We only want to perform lots of writes to overwrite junk data.

• The cache will carefully load all the junk data before overwriting 
it.

• Especially nasty if the array is sized generously but everything is 
initialized

• Work arounds

• Use special HW features to zero the array (compiler directives).

• Combine initialization with the first access loop
• This increases the chance of a programming error so have a debugging 

options to perform original initialization as well



Prefetching

• Many processors have special prefetch instructions to 

request data to be loaded into cache.

• Compilers will try to insert these automatically

• For best results will probably need compiler directives 

to be inserted.

• Read the compiler manual.

• Write-allocate caches may have instructions to zero 

cache lines

• Useful for array initialization

• Probably need directives again.



Pointer aliasing

• Pointers are variables containing memory addresses.

• Pointers are useful but can seriously inhibit code performance.

• Compilers try very hard to reduce memory accesses.

• Only loading data from memory once.

• Keep variables in registers and only update memory copy when 

necessary.

• Pointers could point anywhere, to be safe:

• Reload all values after write through pointer

• Synchronize all variables with memory before read through 

pointer 



Pointers and Fortran

• F77 had no pointers

• Arguments passed by reference (address)
• Subroutine arguments are effectively pointers

• But it is illegal Fortran if two arguments overlap

• F90/F95 has restricted pointers
• Pointers can only point at variables declared as a “target” or at 

the target of another pointer

• Compiler therefore knows more about possible aliasing 
problems

• Try to avoid F90 pointers for performance critical data 
structures.



Pointers and C

• In C pointers are unrestricted
• Can therefore seriously inhibit performance

• Almost impossible to do without pointers
• malloc requires the use of pointers.

• Pointers used for call by reference. Alternative is call by value 
where all data is copied!

• Compilers may have #pragma extensions or compiler 
flags to assert pointers do not overlap
• Usually not portable between platforms

• Explicit use of scalar temporaries may reduce the 
problem



Compiler optimisations

• We will consider a set of optimisations which a typical 
optimising compiler might perform. 

• We will illustrate many transformations at the source 
level.
• important  to remember that compiler is making transformations 

at IR or assembly level

Programmer’s perspective:

These are (largely) optimisations which you would expect 
a compiler to do, and should very rarely be hand-coded.  



Compiler optimisations

• Constant folding
• Propagate constants through code and insert pre-calculated values 

if they don’t change

• Algebraic simplification
• Eliminating unnecessary operations

• Copy and constant propagation
• Replace variables if they are the same

• Redundancy elimination
• Common subexpression elimination, loop invariant code motion, 

dead code removal

• Simple loop optimisation
• Strength reduction (replace computation based on loop variable 

with increments), induction variable removal (replace with loop 
variable variant), 



Inlining

• Inlining replaces a procedure call with the a copy of the 

procedure body.

• Can enable other optimisations

• especially if call is inside a loop

• Benefits must be weighed against:

• increase in code size (risk of more instruction cache misses)

• increased register pressure

• Handling complex control flow or static/SAVE variables 

is a bit tricky.    



Loop unrolling

• Loops with small bodies generate small basic blocks of assembly 
code

• lot of dependencies between instructions

• high branch frequency

• little scope for good instruction scheduling

• Loop unrolling is a technique for increasing the size of the loop body

• gives more scope for better schedules

• reduces branch frequency

• make more independent instructions available for multiple issue.

• Replace loop body by multiple copies of the body

• Modify loop control

• take care of arbitrary loop bounds

• Number of copies is called unroll factor



Loop unrolling

• Choice of unroll factor is important (usually 2,4,8)

• if factor is too large, can run out of registers

• Cannot unroll loops with complex flow control 

• hard to generate code to jump out of the unrolled version at the right place  

• Function calls 

• except in presence of good interprocedural analysis and inlining

• Conditionals

• especially control transfer out of the loop

• Pointer/array aliasing

do i=1,n

a(i)=b(i)+d*c(i)

end do

do i=1,n-3,4

a(i)=b(i)+d*c(i)

a(i+1)=b(i+1)+d*c(i+1)

a(i+2)=b(i+2)+d*c(i+2)

a(i+3)=b(i+3)+d*c(i+3)

end do

do j = i,n

a(j)=b(j)+d*c(j)

end do



Outerloop unrolling

• If we have a loop nest, then it is possible to unroll one 

of the outer loops instead of the innermost one. 

• Can improve locality. do i=1,n,4

do j=1,m

a(i,j)=c*d(j) 

a(i+1,j)=c*d(j) 

a(i+2,j)=c*d(j) 

a(i+3,j)=c*d(j)

end do 

end do

do i=1,n

do j=1,m

a(i,j)=c*d(j)

end do 

end do

2 loads for 1 flop 5 loads for 4 flops



Variable expansion
• Variable expansion can help break dependencies in 

unrolled loops

• improves scheduling opportunities

• Close connection to reduction variables in parallel loops

for (i=0,i<n,i+=2){

b1+=a[i];

b2+=a[i+1];

}

b=b1+b2;

for (i=0,i<n,i+=2){

b+=a[i];

b+=a[i+1];

}

for (i=0,i<n,i++){

b+=a[i];

}

unroll

expand b



Divisions

• Division operation is costly (10s of instructions)

• Can often be replaced by a multiplication:

do i=1,n

do j=1,m

a(i,j)=d(j)/2

end do 

end do

• Hard for compiler to do this if using floating point numbers 

(will alter results)

tempdiv = 1/2

do i=1,n

do j=1,m

a(i,j)=d(j)*tempdiv

end do 

end do



Further optimisations

• These optimisations are not done by all compilers.

• Whereas it is (relatively) easy for a compiler to work out whether a given 

transformation reduces the number of instructions required, it is much 

harder for it to predict cache misses.

• You may need to consider implementing this type of optimisation by 

hand. In a nest of more than one loop, loop order is important for 

exploiting spatial locality in caches. 

• Recall that in Fortran, arrays are laid out by columns, whereas in C (and 

Java) they are laid out by rows.

A[i][j]

i

j jA(i,j)

iFortran C/Java



Loop interchange

• Loop interchange swaps the loops in a double loop nest

• Can be generalised to reordering loop nests of depth 3 

or more

• loop permutation

for (j=0;j<n;j++){

for (i=0;i<m;i++){

a[i][j]+=b[i][j];

}

}

for (i=0;i<m;i++){

for (j=0;j<n;j++){

a[i][j]+=b[i][j];

}

}

• Traverses memory 

locations in order

• Good spatial locality

• Does not traverse memory 

locations in order

• Poor spatial locality



Loop fusion

• If two adjacent loops have the same iteration space, 

their bodies can be merged (provided dependencies 

are respected).

• Can improve temporal locality

• or may reduce the number of memory references required.

for (j=0;j<n;j++){

a[j]+=1;

}

for (i=0;i<n;i++){

b[i]=a[i]*2;

}

for (j=0;j<n;j++){

a[j]+=1;

b[j]=a[j]*2;

}



Loop distribution

• Loop distribution is in the inverse of loop fusion

• Can reduce conflict/capacity misses

• can also reduce register pressure in large loop bodies

• Choosing whether to fuse/distribute can be tricky!

for (j=0;j<n;j++){

a[j]+=1;

b[j]*=2;

}

for (j=0;j<n;j++){

a[j]+=1;

}

for (j=0;j<n;j++){

b[j]*=2;

}



Loop tiling
• Loop tiling increases the depth of a loop nest

• Improves temporal locality by reordering traversal of iteration space into 

compact blocks.

• Also known as loop blocking, strip mining + interchange, unrolling and 

jamming.  

for (i=0;i<n;i++){

for (j=0;j<n;j++){

a[i][j]+=b[i][j];

}

}

for (ii=0;ii<n;ii+=B){

for (jj=0;jj<n;jj+=B){

for (i=ii;i<ii+B;i++){

for (j=jj;j<jj+B;j++){

a[i][j]+=b[i][j];

}

}

}

}i

j

i

j



Array padding

• It is easier to transform loops than arrays

• Loop transforms are purely local in the program

• Array transforms may have effects elsewhere

• Array padding consists of adding additional, unused 

space between array, or between dimensions of arrays.

• Can reduce conflict misses. 

float a[2][4096];

for (j=0;j<n;j++){

a[1][j]+=1;

a[2][j]*=2;

}

float a[2][4096+64];

for (j=0;j<n;j++){

a[1][j]+=1;

a[2][j]*=2;

}



Loop tiling and array padding

• Loop tiling is most effective when there is some reuse of data within a 
tile.

• Need to choose the tile size such that all the data accessed by the tile fits 
into cache. 

• need to err on the small side, because of potential conflict misses, especially in 
direct mapped caches. 

• may utilise multiple levels of tiling for multiple levels of cache

• It is easier to transform loops than arrays

• Loop transforms are purely local in the program

• Array transforms may have effects elsewhere

• Array padding consists of adding additional, unused space between 
array, or between dimensions of arrays.

• Can reduce conflict misses



Local vs global variables

• Compiler analysis is more effective with local variables

• Has to make worst case assumptions about global 

variables

• Globals could be modified by any called procedure (or 

by another thread).

• Use local variables where possible

• Automatic variables are stack allocated: allocation is 

essentially free.

• In C, use file scope globals in preference to externals



Conditionals

• Even with sophisticated branch prediction hardware, branches are 

bad for performance.

• Try to avoid branches in innermost loops.

• if you can’t eliminate them, at least try to get them out of the critical 

loops.

• Simple example:

do i=1,k

if (n .eq. 0) then

a(i) = b(i) + c

else

a(i) = 0.

endif

end do 

if (n .eq. 0) then

do i=1,k

a(i) = b(i) + c

end do

else

do i=1,k

a(i) = 0.

end do

endif



Conclusions

• Lots of different approaches

• Simple steps can give big benefits

• Compiler flags

• Awareness of memory layout for coding

• Need to really understand performance before starting 

work

• Profiling, hardware counters, etc…

• Consider portability


