
SINGLE-SIDED PGAS

COMMUNICATIONS

LIBRARIES
Basic usage of OpenSHMEM

 2

Outline

• Concept and Motivation

• Remote Read and Write

• Synchronisation

• Implementations

• OpenSHMEM

• Summary

Philosophy of the talks

• In general, we will

• describe a concept (e.g. synchronisation) that is relevant in general

for PGAS models

• explain how this is implemented specifically in OpenSHMEM

• Why?

• writing correct PGAS programs can be hard

• experiences from MPI or OpenMP can be misleading

• Recommended approach

• don’t think “how can I write this in OpenSHMEM”

• do think “how can I write this using a PGAS approach”

• do think “what issues (e.g. synchronisation) should be addressed”

• then implement (e.g. in OpenSHMEM)

 3

 4

Single-Sided Model
• Remote memory can be read or written directly using library calls

• Remote process does not actively participate

• No matching receive (or send) needs to be performed

• Synchronisation is now a major issue

• May be difficult to calculate remote addresses

Origin

process

Remote

process

Window

Memory

 5

Motivation

• Why extend the basic message-passing model?

• Hardware

• Many MPPs support Remote Memory Access (RMA) in hardware

• This is the fundamental model for SMP systems

• Many users have started to use RMA calls for efficiency

• Has lead to the development of non-portable parallel applications

• Software

• Many algorithms naturally single-sided

• e.g., sparse matrix-vector

• Matching send/receive pairs requires extra programming

• Even worse if communication structure changes

• e.g., adaptive decomposition

History (official)

• Cray SHMEM (MP-SHMEM, LC-SHMEM)

• Cray first introduced SHMEM in 1993 for its Cray T3D systems.

• Cray SHMEM was also used in other models: T3E, PVP and XT

• SGI SHMEM (SGI-SHMEM)

• Cray Research merged with Silicon Graphics (SGI) February 1996.

• SHMEM incorporated into SGI’s Message Passing Toolkit (MPT)

• Quadrics SHMEM (Q-SHMEM)

• an optimised API for the Quadrics QsNet interconnect in 2001

• First OpenSHMEM standard in 2012

 6

History (unofficial)

• SHMEM library developed for Cray T3D in 1993

• basis of Cray MPI libary as developed by EPCC

• many users called the SHMEM library directly for performance

• very hard to use correctly (e.g. manual cache coherency!)

• Continued on Cray T3E

• easier to use as cache coherency is automatic

• possibility of smaller latencies than (EPCC-optimised) Cray T3E MPI

• Maintained afterwards mainly for porting existing codes

• eg from important US customers such as ORNL

• although performance on SGI NUMA machines presumably good

• OpenSHMEM an important standardisation process

• originally rather messy in places

• recent version 1.2 much cleaner

 7

 8

OpenSHMEM Terminology

• PE

• a Processing Element (i.e. process), numbered as 0, 1, 2, …, N-1

• origin

• Process that performs the call

• remote_pe

• Process on which memory is accessed

• source

• Array which the data is copied from

• target

• Array which the data is copied to

 9

Puts and Gets

• Key routines

• PUT is a remote write

• GET is a remote read

 10

Puts and Gets

• Key routines

• PUT is a remote write

• generically: put(target,source,len,remote_pe)

• write len elements from source on origin to target on remote_pe

• returns before data has arrived at target

• GET is a remote read

• generically : get(target,source,len,remote_pe)

• …but data is transferred in the opposite direction

• read len elements from source on remote_pe to target on origin

• returns after data has arrived at target

How do we know it is safe to
overwrite target?

How do we know source is

ready to be accessed?

 11

Making Data Available for RMA

• For safety, only allow RMA access to certain data

• Under the control of the user

• Such data must be explicitly published in some way

• All data on the remote_pe must be published

• i.e., the source of a get or the destination of a put

• Data on the origin PE may not need to be published

• can access as standard arrays

• e.g., the target of a get or the source of a put

 12

Remote Addresses

• In general, each process has its own local memory

• Even in SPMD, each instance of a particular variable on

different processors may have a different address

• not all processes may even declare a particular array at runtime

• It is possible for processors to access remote memory by

• Ensuring all variable instances have the same relative address

• Registering variables as available for RMA

• Registering windows of memory as available for RMA

• OpenSHMEM takes the first approach

Symmetric Memory

• Consider put(target,source,len,remote_pe)

• all parameters provided by the origin PE

• but target is to be interpreted at the remote_pe

• Solution

• ensure address of target is the same on every PE

• not possible for data allocated on the stack or dynamically (e.g. via malloc)

• in OpenSHMEM it must be allocated in symmetric memory

• Symmetric objects

• Fortran: any data that is saved

• C/C++: global/static data

• or call special versions of malloc (see next talk)

 13

Data Allocation
! Fortran

subroutine fred

 real :: x(4,4) ! not symmetric

 real, save :: x(4,4) ! symmetric

 …

end subroutine fred

// C

float x[4][4]; // symmetric

void fred()

{

 float x[4][4]; // not symmetric

 …

}

 14

 15

Synchronisation is critical for RMA

• Various different approaches exist

• Collective synchronisation across all processors

• Pairwise synchronisation

• Locks

• Flexibility needed for different algorithms/applications
• Differing performance costs

• Synchronisation issues can become very complicated

• RMA libraries can have subtle synchronisation requirements

• EPCC taught (correct) use of SHMEM for the T3D/T3E

• but saw many codes that worked in practice, but were technically
incorrect!

• Ease-of-use sacrificed for performance

 16

1) Collective
• Simplest form of synchronisation

• Pair of barriers encloses sequence of RMA operations

• 2nd call only returns when all communications are complete

• Useful when communications pattern is not known

• Simple and robust programming model

Process A Process B Process C

BARRIER

BARRIER

 17

2) Pairwise Model

• Useful when comms pattern is known in advance

• Implemented via library routines and/or flag variables

• More complicated model

• Closer to message-passing than previous collective approach

• But can be more efficient and flexible

Process A Process B Process C

START(B)

POST({A,C})

START(B)

COMPLETE COMPLETE

WAIT

 18

3) Locks
• Remote process neither synchronises nor communicates

• Origin process locks data on remote process

• Exclusive locks ensure sequential access

Process A Process B Process C

LOCK

UNLOCK

UNLOCK

LOCK

 19

Synchronisation

• Must consider appropriate synchronisation for all RMA

operations

• Results often only guaranteed to be available after a

synchronisation point

• Some communications could actually be delayed until this point

• May even happen out of order!

• E.g., implementation on a machine without native RMA

• Issue non-blocking MPI sends for the puts

• Wait for them all to complete at the synchronisation point

• Inefficient, but at least allows RMA to be implemented

 20

Implementations

• OpenSHMEM

• Portable standard

• GASPI: http://www.gaspi.de/en/

• e.g. as implemented in GPI-2

• MPI-2: Single-sided communication is part of the MPI-2 standard

• recently revised in MPI 3 to take advantage of local shared memoy

• BSP: Bulk Synchronous Parallel

• LAPI: Low-level Applications Programming Interface (IBM)

• SHMEM: SHared MEMory (Cray/SGI)

• Languages

• Universal Parallel C (UPC), Fortran Coarrays

http://www.gaspi.de/en/
http://www.gaspi.de/en/

 21

OpenSHMEM PUT

• shmem_[funcname]_put(target,source,len,remote_pe)

• Writes len elements of contiguous data from address source on

the origin PE to address target on remote_pe

• target must be the address of a symmetric data object

• Fortran

• [funcname] can be: INTEGER, REAL, DOUBLE, COMPLEX,

LOGICAL or CHARACTER

• e.g. CALL SHMEM_REAL_PUT(x, y, 1, 5)

• C

• [funcname] can be: int, float, double, short, long, longlong or

longdouble

• e.g. shmem_float_put(&x, &y, 1, 5)

 22

Other Routines

• Alternative functions for single elements (i.e. len = 1) in C only
• shmem_[type]_p(type *target, type source, int remote_pe)

• e.g. shmem_float_p(&x, y, 5)

• Alternative functions which count in terms of memory
• shmem_putX(target,source,len,remote_pe)

• Fortran

• [PUTX] can be PUTMEM, PUT4, PUT8, PUT32, PUT64, PUT128

• PUTMEM, PUT4, PUT8 count in multiples of 1, 4 and 8 bytes

• PUT32, PUT64, PUT128 count in 32, 64 and 128 bits

• C

• [PUTX] can be PUTMEM, PUT32, PUT64, PUT128

• multiples of bytes (8 bits), 32, 64 and 128 bits

 23

OpenSHMEM GET
• CALL

SHMEM_[funcname]_GET(target,source,len,remote_pe)

• Reads len elements of contiguous data from address source on
remote_pe to address target on origin PE

• [funcname] can be: INTEGER, DOUBLE, COMPLEX, LOGICAL,
 REAL or CHARACTER

• source must be the address of a symmetric data object

• Similar range of routines as for PUT
• SHMEM_GET32, SHMEM_INTEGER_GET, …

• Similar interfaces for C routines
• e.g., void shmem_int_get(int *target, const int
*source, size_t nelems, int remote_pe);

 24

Support Routines (Fortran)
• All Fortran programs include the header file ’shmem.fh’

• Initialisation: CALL SHMEM_INIT()

• Initialises the OpenSHMEM library

• e.g., sets up the symmetric heap, PE numbers, …

• Must be called before any other library routine is called

• Finalisation: CALL SHMEM_FINALIZE()

• Query Routines

• SHMEM_MY_PE()

• Returns the PE number of the calling PE

• SHMEM_N_PES()

• Returns the number of processing elements used to run the application

 25

Fortran “Hello World”
PROGRAM Hello_World

 IMPLICIT NONE

 INCLUDE ‘shmem.fh’

 INTEGER me, npes

 CALL SHMEM_INIT()

 me = SHMEM_MY_PE()

 npes = SHMEM_N_PES()

 WRITE(*,*) ‘I am PE ‘, me, ‘ out of ‘, npes

 CALL SHMEM_FINALIZE()

END PROGRAM Hello_World

 26

Support Routines (C)
• All C programs include the header file ’shmem.h’

• Initialisation: shmem_init();

• Initialises the OpenSHMEM library

• e.g., sets up the symmetric heap, PE numbers, …

• must be called before any other library routine is called

• Finalisation: shmem_finalize();

• Query Routines

• int shmem_my_pe();

• Returns the PE number of the calling PE

• int shmem_npes();

• Returns the number of processing elements used to run the application

 27

C “Hello World”
#include “shmem.h”

int main(void)

{

 int me, npes;

 shmem_init();

 me = shmem_my_pe();

 npes = shmem_n_pes();

 printf(“I am PE %d out of %d\n”, me, npes);

 shmem_finalize();

}

 28

Global Synchronisation

 CALL SHMEM_BARRIER_ALL()

 void shmem_barrier_all();

• Suspend execution on the calling PE until all other PEs

reach this point of execution path

• i.e., synchronise all PEs

• also ensures all outstanding OpenSHMEM puts are complete

• Simplest form of synchronisation

• perhaps not the most efficient – see later

Communications details
• Vary between PGAS implementations but for OpenSHMEM:

• put(target,source,len,remote_pe)

• on return, source is in the network on its way to remote pe

• source can therefore be safely overwritten at origin pe

• but is not guaranteed to have arrived at destination

• get(target,source,len,remote_pe)

• on return, contents of source written to target on origin pe

• target can therefore be safely read at origin pe

• So synchronisation is simpler for gets?

• no!

 29

Using barriers
! wait until target is ready to receive

shmem_barrier_all

! write to remote pe

shmem_put(remote, local, ndata, target_pe)

! wait until incoming puts have completed

shmem_barrier_all

! wait until target data is ready to be read

shmem_barrier_all

! read from remote pe

shmem_get(local, remote, ndata, target_pe)

! wait until other pes have read my data

shmem_barrier_all

 30

Common mistakes
• Comparison with MPI

• If you have MPI barriers in your code that you think are required for

program correctness then most probably:

• you are either mistaken (i.e. it will run correctly and faster without barriers)!

• or you have a bug in your code that just happens to disappear when you

introduce barriers

• MPI barriers are almost never required for correctness

• For OpenSHMEM

• If you do not have synchronisation before and after puts and gets

• you probably have an incorrect program – you will need to think very hard

to ensure that it is correct

• just because it happens to run correctly does not mean it is correct!

• Synchronisation is almost always required both before and after

OpenSHMEM puts and gets

 31

 32

Summary

• Single-sided communication is invaluable for certain classes

of problem

• Determined by the algorithm

• Simpler protocol can bring performance benefits

• But requires thinking about synchronisation, remote addresses,...

• Various single-sided implementations now exist

• MPI-2: quite general and portable to most platforms

• OpenSHMEM: more limited functionality but often better performance

• Synchronisation is critical

• As with all PGAS languages

• Barriers are simplest OpenSHMEM approach

