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Philosophy of the talks 

• In general, we will 

• describe a concept (e.g. synchronisation) that is relevant in general 

for PGAS models 

• explain how this is implemented specifically in OpenSHMEM 

• Why? 

• writing correct PGAS programs can be hard 

• experiences from MPI or OpenMP can be misleading 

• Recommended approach 

• don’t think “how can I write this in OpenSHMEM” 

• do think “how can I write this using a PGAS approach” 

• do think “what issues (e.g. synchronisation)  should be addressed” 

• then implement (e.g. in OpenSHMEM) 

  3 



  4 

Single-Sided Model 
• Remote memory can be read or written directly using library calls 

 

 

 

 

 

 

 

 

• Remote process does not actively participate 

• No matching receive (or send) needs to be performed 

• Synchronisation is now a major issue 

• May be difficult to calculate remote addresses 

Origin 

process 

Remote 

process 

Window 

Memory 
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Motivation 

• Why extend the basic message-passing model? 

• Hardware 

• Many MPPs support Remote Memory Access (RMA) in hardware 

• This is the fundamental model for SMP systems 

• Many users have started to use RMA calls for efficiency 

• Has lead to the development of non-portable parallel applications 

• Software 

• Many algorithms naturally single-sided 

• e.g., sparse matrix-vector 

• Matching send/receive pairs requires extra programming 

• Even worse if communication structure changes 

• e.g., adaptive decomposition 



History (official) 

• Cray SHMEM (MP-SHMEM, LC-SHMEM) 

• Cray first introduced SHMEM in 1993 for its Cray T3D systems. 

• Cray SHMEM was also used in other models: T3E, PVP and XT 

 

• SGI SHMEM (SGI-SHMEM) 

• Cray Research merged with Silicon Graphics (SGI) February 1996. 

• SHMEM incorporated into SGI’s Message Passing Toolkit (MPT) 

 

• Quadrics SHMEM (Q-SHMEM) 

• an optimised API for the Quadrics QsNet interconnect in 2001 

 

• First OpenSHMEM standard in 2012 
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History (unofficial) 

• SHMEM library developed for Cray T3D in 1993 

• basis of Cray MPI libary as developed by EPCC 

• many users called the SHMEM library directly for performance 

• very hard to use correctly (e.g. manual cache coherency!) 

• Continued on Cray T3E 

• easier to use as cache coherency is automatic 

• possibility of smaller latencies than (EPCC-optimised) Cray T3E MPI 

• Maintained afterwards mainly for porting existing codes 

• eg from important US customers such as ORNL 

• although performance on SGI NUMA machines presumably good 

• OpenSHMEM an important standardisation process 

• originally rather messy in places 

• recent version 1.2 much cleaner 
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OpenSHMEM Terminology 

• PE 

• a Processing Element (i.e. process), numbered as 0, 1, 2, …, N-1 

 

• origin 

• Process that performs the call 

• remote_pe 

• Process on which memory is accessed 

 

• source 

• Array which the data is copied from 

• target 

• Array which the data is copied to 
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Puts and Gets 

• Key routines 

 

• PUT is a remote write 

 

 

 

 

• GET is a remote read 
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Puts and Gets 

• Key routines 

 

• PUT is a remote write 

• generically: put(target,source,len,remote_pe) 

• write len elements from source on origin to target on remote_pe 

• returns before data has arrived at target 

 

• GET is a remote read 

• generically : get(target,source,len,remote_pe) 

• …but data is transferred in the opposite direction 

• read len elements from source on remote_pe to target on origin 

• returns after data has arrived at target 

How do we know it is safe to 
overwrite target?  

How do we know source is 

ready to be accessed?  
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Making Data Available for RMA 

• For safety, only allow RMA access to certain data 

• Under the control of the user 

 

• Such data must be explicitly published in some way 

 

• All data on the remote_pe must be published 

• i.e., the source of a get or the destination of a put 

 

• Data on the origin PE may not need to be published 

• can access as standard arrays 

• e.g., the target of a get or the source of a put 
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Remote Addresses 

• In general, each process has its own local memory 

 

• Even in SPMD, each instance of a particular variable on 

different processors may have a different address 

• not all processes may even declare a particular array at runtime 

 

• It is possible for processors to access remote memory by 

• Ensuring all variable instances have the same relative address 

• Registering variables as available for RMA 

• Registering windows of memory as available for RMA 

 

• OpenSHMEM takes the first approach 



Symmetric Memory 

• Consider  put(target,source,len,remote_pe) 

• all parameters provided by the origin PE 

• but target is to be interpreted at the remote_pe 

 

• Solution 

• ensure address of target is the same on every PE 

• not possible for data allocated on the stack or dynamically (e.g. via malloc) 

• in OpenSHMEM it must be allocated in symmetric memory 

 

• Symmetric objects 

• Fortran: any data that is saved 

• C/C++: global/static data 

• or call special versions of malloc (see next talk) 
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Data Allocation 
! Fortran 

subroutine fred 

  real :: x(4,4)       ! not symmetric 

  real, save :: x(4,4) ! symmetric 

  … 

end subroutine fred 

 

// C 

float x[4][4];          // symmetric 

 

void fred() 

{ 

  float x[4][4];        // not symmetric 

  … 

} 
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Synchronisation is critical for RMA 

• Various different approaches exist 

• Collective synchronisation across all processors 

• Pairwise synchronisation 

• Locks 

 

• Flexibility needed for different algorithms/applications 
• Differing performance costs 

• Synchronisation issues can become very complicated 

• RMA libraries can have subtle synchronisation requirements 

• EPCC taught (correct) use of SHMEM for the T3D/T3E 

• but saw many codes that worked in practice, but were technically 
incorrect! 

• Ease-of-use sacrificed for performance 
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1) Collective  
• Simplest form of synchronisation 

• Pair of barriers encloses sequence of RMA operations 

• 2nd call only returns when all communications are complete 

• Useful when communications pattern is not known 

• Simple and robust programming model 

Process A Process B Process C 

BARRIER 

BARRIER 
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2) Pairwise Model 

• Useful when comms pattern is known in advance 

• Implemented via library routines and/or flag variables 

 

 

 

 

 
 

• More complicated model 

• Closer to message-passing than previous collective approach 

• But can be more efficient and flexible 

Process A Process B Process C 

START(B) 

POST({A,C}) 

START(B) 

COMPLETE COMPLETE 

WAIT 
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3) Locks 
• Remote process neither synchronises nor communicates 

• Origin process locks data on remote process 

• Exclusive locks ensure sequential access 

Process A Process B Process C 

LOCK 

UNLOCK 

UNLOCK 

LOCK 
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Synchronisation 

• Must consider appropriate synchronisation for all RMA 

operations 
 

• Results often only guaranteed to be available after a 

synchronisation point 

• Some communications could actually be delayed until this point 

• May even happen out of order! 
 

• E.g., implementation on a machine without native RMA 

• Issue non-blocking MPI sends for the puts 

• Wait for them all to complete at the synchronisation point 

• Inefficient, but at least allows RMA to be implemented 
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Implementations 

• OpenSHMEM 

• Portable standard 
 

• GASPI: http://www.gaspi.de/en/ 

• e.g. as implemented in GPI-2 
 

• MPI-2: Single-sided communication is part of the MPI-2 standard 

• recently revised  in MPI 3 to take advantage of local shared memoy 
 

• BSP: Bulk Synchronous Parallel 

• LAPI: Low-level Applications Programming Interface (IBM) 

• SHMEM: SHared MEMory (Cray/SGI) 
 

• Languages 

• Universal Parallel C (UPC), Fortran Coarrays 

http://www.gaspi.de/en/
http://www.gaspi.de/en/
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OpenSHMEM PUT 

• shmem_[funcname]_put(target,source,len,remote_pe) 

• Writes len elements of contiguous data from address source on 

the origin PE to address target on remote_pe 

• target must be the address of a symmetric data object 

 

• Fortran 

• [funcname] can be: INTEGER, REAL, DOUBLE, COMPLEX, 

LOGICAL or CHARACTER 

• e.g. CALL SHMEM_REAL_PUT(x, y, 1, 5) 

• C 

• [funcname] can be: int, float, double, short, long, longlong or 

longdouble 

• e.g. shmem_float_put(&x, &y, 1, 5) 
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Other Routines 

• Alternative functions for single elements (i.e. len = 1) in C only 
• shmem_[type]_p(type *target, type source, int remote_pe) 

• e.g. shmem_float_p(&x, y, 5) 
 

• Alternative functions which count in terms of memory 
• shmem_putX(target,source,len,remote_pe) 

 

• Fortran 

• [PUTX] can be PUTMEM, PUT4, PUT8, PUT32, PUT64, PUT128 

• PUTMEM, PUT4, PUT8 count in multiples of 1, 4 and 8 bytes 

• PUT32, PUT64, PUT128 count in 32, 64 and 128 bits 
 

• C 

• [PUTX] can be PUTMEM, PUT32, PUT64, PUT128 

• multiples of bytes (8 bits), 32, 64 and 128 bits 
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OpenSHMEM GET 
• CALL 

SHMEM_[funcname]_GET(target,source,len,remote_pe) 

• Reads len elements of contiguous data from address source on 
remote_pe to address target on origin PE 

• [funcname] can be: INTEGER, DOUBLE, COMPLEX, LOGICAL, 
      REAL or CHARACTER 

• source must be the address of a symmetric data object 
 

• Similar range of routines as for PUT 
• SHMEM_GET32, SHMEM_INTEGER_GET, … 

 

• Similar interfaces for C routines 
• e.g., void shmem_int_get(int *target, const int 
*source, size_t nelems, int remote_pe); 
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Support Routines (Fortran) 
• All Fortran programs include the header file ’shmem.fh’ 

 

• Initialisation: CALL SHMEM_INIT() 

• Initialises the OpenSHMEM library 

• e.g., sets up the symmetric heap, PE numbers, … 

• Must be called before any other library routine is called 

• Finalisation: CALL SHMEM_FINALIZE() 
 

• Query Routines 

• SHMEM_MY_PE() 

• Returns the PE number of the calling PE 

• SHMEM_N_PES() 

• Returns the number of processing elements used to run the application 
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Fortran “Hello World” 
PROGRAM Hello_World 

 IMPLICIT NONE 

 INCLUDE ‘shmem.fh’ 

 

 INTEGER me, npes 

 

 CALL SHMEM_INIT() 

 me   = SHMEM_MY_PE() 

 npes = SHMEM_N_PES() 

 

 WRITE(*,*) ‘I am PE ‘, me, ‘ out of ‘, npes 

 

 CALL SHMEM_FINALIZE() 

 

END PROGRAM Hello_World 
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Support Routines (C) 
• All C programs include the header file ’shmem.h’ 

 

• Initialisation: shmem_init(); 

• Initialises the OpenSHMEM library 

• e.g., sets up the symmetric heap, PE numbers, … 

• must be called before any other library routine is called 

• Finalisation: shmem_finalize(); 
 

• Query Routines 

• int shmem_my_pe(); 

• Returns the PE number of the calling PE 

• int shmem_npes(); 

• Returns the number of processing elements used to run the application 
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C “Hello World” 
#include “shmem.h” 

 

int main(void) 

{ 

 int me, npes; 

 

 shmem_init(); 

 

 me   = shmem_my_pe(); 

 npes = shmem_n_pes(); 

 

 printf(“I am PE %d out of %d\n”, me, npes); 

 

 shmem_finalize(); 

} 
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Global Synchronisation 

  CALL SHMEM_BARRIER_ALL() 

  void shmem_barrier_all(); 

 

• Suspend execution on the calling PE until all other PEs 

reach this point of execution path 

• i.e., synchronise all PEs 

• also ensures all outstanding OpenSHMEM puts are complete 

 

• Simplest form of synchronisation 

• perhaps not the most efficient – see later 

 



Communications details 
• Vary between PGAS implementations but for OpenSHMEM: 

 

• put(target,source,len,remote_pe) 

• on return, source is in the network on its way to remote pe 

• source can therefore be safely overwritten at origin pe 

• but is not guaranteed to have arrived at destination 
 

• get(target,source,len,remote_pe) 

• on return, contents of source written to target on origin pe 

• target can therefore be safely read at origin pe 

 

• So synchronisation is simpler for gets? 

• no! 
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Using barriers 
! wait until target is ready to receive 

shmem_barrier_all 

! write to remote pe 

shmem_put(remote, local, ndata, target_pe) 

! wait until incoming puts have completed 

shmem_barrier_all 

 

! wait until target data is ready to be read 

shmem_barrier_all 

! read from remote pe 

shmem_get(local, remote, ndata, target_pe) 

! wait until other pes have read my data 

shmem_barrier_all 
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Common mistakes 
• Comparison with MPI 

• If you have MPI barriers in your code that you think are required for 

program correctness then most probably: 

• you are either mistaken (i.e. it will run correctly and faster without barriers)! 

• or you have a bug in your code that just happens to disappear when you 

introduce barriers 

• MPI barriers are almost never required for correctness 

 

• For OpenSHMEM 

• If you do not have synchronisation before and after puts and gets 

• you probably have an incorrect program – you will need to think very hard 

to ensure that it is correct 

• just because it happens to run correctly does not mean it is correct! 

• Synchronisation is almost always required both before and after 

OpenSHMEM puts and gets 
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Summary 

• Single-sided communication is invaluable for certain classes 

of problem 

• Determined by the algorithm 

• Simpler protocol can bring performance benefits 

• But requires thinking about synchronisation, remote addresses,... 

• Various single-sided implementations now exist 

• MPI-2: quite general and portable to most platforms 

• OpenSHMEM: more limited functionality but often better performance 

• Synchronisation is critical 

• As with all PGAS languages 

• Barriers are simplest OpenSHMEM approach 


