Image Processing

A case study for a domain decomposed MPI code

• Starting with a big array:

• Split it into pieces:

Assign pieces to processors:

P2

Use Halos to deal with interactions

Edge detection / image reconstruction

Edge detection

Compare pixel to its four nearest neighbours

 $edge_{i,j} = image_{i-1,j} + image_{i+1,j} + image_{i,j-1} + image_{i,j+1} - 4 image_{i,j}$

- Pad 2D arrays with halos
 - in serial code, halo values set to white (i.e. 255)

Image reconstruction

- Jacobi Solver to undo the simple edge detection algorithm (a five-point stencil
 - Simple example of a discretised partial differential equation with nearest-neighbour interactions
 - Actually solving $\nabla^2 image = edge$

$$new_{i,j} = \frac{1}{4}(old_{i-1,j} + old_{i+1,j} + old_{i,j-1} + old_{i,j+1} - edge_{i,j})$$

- Repeat many times
 - In parallel, must update halo values from neighbours every iterations

- Different choices in C and Fortran $_{M\!/\!4}$

3	
2	
1	
0	↓ N/4

The case study

- We provide you with:
 - More detailed printed instruction
 - Tar-ball (Choice of C or Fortran)
 - Input routine
 - Output routine
 - Couple of input files
- Tasks
 - Write a serial code (with halos for fixed boundary conditions)
 - check that the serial code works!!
 - Distribute the work onto the processors; separate reconstructions
 - Get the halos exchanged; single reconstruction, identical to serial
 - Further suggestions on the instruction sheet

