
Derived Datatypes



MPI Datatypes

• Basic types

• Derived types

• vectors

• structs

• others



Basic datatypes
int x[10];

INTEGER:: x(10);

// send all 10 values

MPI_Send(x, 10, MPI_INT, …);

MPI_SEND(x, 10, MPI_INTEGER, …)

// send first 4 values

MPI_Send(&x[0], 4, …);

MPI_SEND( x(1), 4, …)

// send 5th, 6th, 7th, 8th

MPI_SEND( x(5), 4, …)

MPI_Send(&x[4], 4, …);

// ??
struct mystruct x[10];

type(mytype) :: x(10)



Motivation

• Send / Recv calls need a datatype argument

• pre-defined values exist for pre-defined language types

• eg real <-> MPI_REAL; int <-> MPI_INT

• What about types defined by a program?

• eg structures (in C) or user-defined types (Fortran)

• Send / Recv calls take a count parameter

• what about data that isn’t contiguous in memory?

• eg subsections of 2D arrays



Approach

• Can define new types in MPI
• user calls setup routines to describe new datatype to MPI

• remember, MPI is a library and NOT a compiler!

• MPI returns a new datatype handle
• store this value in a variable, eg MPI_MY_NEWTYPE

• Derived types have same status as pre-defined 
• can use in any message-passing call

• Some care needed for reduction operations
• user must also define a new MPI_Op appropriate to the new 

datatype to tell MPI how to combine them



Defining types

• All derived types stored by MPI as a list of basic types and 

displacements (in bytes)

• for a structure,  types may be different

• for an array subsection, types will be the same

• User can define new derived types in terms of both basic 

types and other derived types



Derived Data types - Type

basic datatype 0 displacement of datatype 0

basic datatype 1 displacement of datatype 1

... ...

basic datatype n-1 displacement of datatype n-1



Contiguous Data

• The simplest derived datatype consists of a number of 
contiguous items of the same datatype.

• C:

int MPI_Type_contiguous(int count, 

MPI_Datatype oldtype,

MPI_Datatype *newtype)

• Fortran:

MPI_TYPE_CONTIGUOUS(COUNT, OLDTYPE,   

NEWTYPE, IERROR)

INTEGER COUNT, OLDTYPE, NEWTYPE, IERROR



Use of contiguous
• May make program clearer to read

• Imagine sending a block of 4 integers

• use MPI_Ssend with MPI_INT / MPI_INTEGER and count = 4

• Or …
• define a new contiguous type of 4 integers called BLOCK4

• use MPI_Ssend with type=BLOCK4 and count = 1

• May also be useful intermediate stage in building more 
complicated types
• ie later used in definition of another derived type



Vector Datatype Example

• count = 2

• stride = 5

• blocklength = 3

Oldtype

Newtype

3 elements per block

5 element stride 
between blocks

2 blocks



What is a vector type?
• Why is a pattern with blocks and gaps useful?

A vector type corresponds to a 

subsection of a 2D array

• Think about how arrays are stored in memory

• unfortunately, different conventions for C and Fortran!

• must use statically allocated arrays in C because dynamically 
allocated arrays (using malloc) have no defined storage format

• In Fortran, can use either static or allocatable arrays



Coordinate System (how I draw arrays)

x[i][j]

x(i,j)

x[0][3]

x[0][2]

x[0][1]

x[0][0]

i

j

x[1][3]

x[1][2]

x[1][1]

x[1][0]

x[2][3]

x[2][2]

x[2][1]

x[2][0]

x[3][3]

x[3][2]

x[3][1]

x[3][0]

x(1,4)

x(1,1)

x(1,3)

x(1,2)

x(2,4)

x(2,1)

x(2,3)

x(2,2)

x(3,4)

x(3,1)

x(3,3)

x(3,2)

x(4,4)

x(4,1)

x(4,3)

x(4,2)



Array Layout in Memory

• Data is contiguous in memory

• different conventions for mapping 2D t o 1D arrays in C and Fortran

1

2

4

5

6

7

8

9

10

11

12

13

14

15

16

1

5

13

2

6

10

14

3

7

11

15

4

8

12

16

93

C: x[4][4] F: x(4,4)

1 5 132 6 10 143 7 11 154 8 12 169

C: x[16] F: x(16)

i

j



C example

• A 3 x 2 subsection of a 5 x 4 array

• three blocks of two elements separated by gaps of two

C: x[5][4]



Fortran example

• A 3 x 2 subsection of a 5 x 4 array

• two blocks of three elements separated by gaps of two

F: x(5,4)



Equivalent Vector Datatypes

stride = 4

blocklength = 2
count = 3

stride = 5

blocklength = 3
count = 2



Constructing a Vector Datatype
• C:

int MPI_Type_vector (int count, 

int blocklength, int stride,

MPI_Datatype oldtype, 

MPI_Datatype *newtype)

• Fortran:

MPI_TYPE_VECTOR (COUNT, BLOCKLENGTH, 

STRIDE, OLDTYPE, NEWTYPE, IERROR)



Sending a vector

• Have defined a 3x2 subsection of a 5x4 array

• but not defined WHICH subsection

• is it the bottom left-hand corner? top-right?

• Data that is sent depends on what buffer you pass to the 

send routines

• pass the address of the first element that should be sent



Vectors in send routines

MPI_Ssend(&x[1][1], 1, vector3x2, ...);

MPI_SSEND(x(2,2)  , 1, vector3x2, ...)

MPI_Ssend(&x[2][1], 1, vector3x2, ...);

MPI_SSEND(x(3,2)  , 1, vector3x2, ...)



Extent of a Datatype
• May be useful to find out how big a derived type is

• extent is distance from start of first to end of last data entry

• can use these routines to compute extents of basic types too

• answer is returned in bytes

• C:

int MPI_Type_get_extent (MPI_Datatype datatype,

MPI_Aint *extent)

• Fortran:

MPI_TYPE_GET_EXTENT( DATATYPE, EXTENT, IERROR)

INTEGER DATATYPE, EXTENT, IERROR



Structures
• Can define compound objects in C and Fortran

struct compound

{

int    ival;

double dval[3];

};

type compound

integer          :: ival

double precision :: dval(3)

end type compound

• Storage format NOT defined by the language
• different compilers do different things

• eg insert arbitrary padding between successive elements

• need to tell MPI the byte displacements of every element



Constructing a Struct Datatype

• C:

int MPI_Type_create_struct (int count, 

int *array_of_blocklengths,

MPI_Aint *array_of_displacements,

MPI_Datatype *array_of_types, 

MPI_Datatype *newtype)

• Fortran:

MPI_TYPE_CREATE_STRUCT (COUNT, 

ARRAY_OF_BLOCKLENGTHS, 

ARRAY_OF_DISPLACEMENTS,

ARRAY_OF_TYPES, NEWTYPE, IERROR)



Struct Datatype Example
• count = 2

• array_of_blocklengths[0] = 1

• array_of_types[0] = MPI_INT

• array_of_blocklengths[1] = 3

• array_of_types[1] = MPI_DOUBLE

• But how do we compute the displacements?
• need to create a compound variable in our program

• explicitly compute memory addresses of every member

• subtract addresses to get displacements from origin



Address of a Variable
• C:

int MPI_Get_address (void *location, 
MPI_Aint *address)

• Fortran:

MPI_GET_ADDRESS(LOCATION, ADDRESS, IERROR)

<type> LOCATION (*)

INTEGER(KIND=MPI_ADDRESS_KIND) ADDRESS

INTEGER IERROR



Committing a datatype
• Once a datatype has been constructed, it needs to be 

committed before it is used in a message-passing call

• This is done using MPI_TYPE_COMMIT

• C: 

int MPI_Type_commit (MPI_Datatype *datatype)

• Fortran:

MPI_TYPE_COMMIT (DATATYPE, IERROR)

INTEGER DATATYPE, IERROR



Exercise
Derived Datatypes

• See Exercise 7.1 on the sheet

• Modify the passing-around-a-ring exercise.

• Calculate two separate sums:
• rank integer sum, as before

• rank floating point sum

• Use a struct datatype for this.

• If you are a Fortran programmer unfamiliar with Fortran 
derived types then jump to exercise 7.2
• illustrates the use of MPI_Type_vector


