Non-Blocking Communications

EPSRC ==




-
Deadlock




-
Completion

The mode of a communication determines when its
constituent operations complete.
l.e. synchronous / asynchronous

The form of an operation determines when the procedure
implementing that operation will return
l.e. when control is returned to the user program

epCe




Blocking Operations

Relate to when the operation has completed.

Only return from the subroutine call when the operation
has completed.

These are the routines you used thus far

MPI_Ssend
MP|_Recv

5
.zf" i
&~ g -
o
-

epCe



Non-Blocking Operations

Return straight away and allow the sub-program to
continue to perform other work. At some later time the

sub-program can test or wait for the completion of the
non-blocking operation.

L tTe =

./“I = = =
.

PR ®




.
Non-Blocking Operations

All non-blocking operations should have matching wait
operations. Some systems cannot free resources until
wait has been called.

A non-blocking operation immediately followed by a
matching walit is equivalent to a blocking operation.

Non-blocking operations are not the same as sequential
subroutine calls as the operation continues after the call
has returned.

epCe

5
Y ~7 | €
&~ g -
o
P




Non-Blocking Communications

Separate communication into three phases:
Initiate non-blocking communication.

Do some work (perhaps involving other communications?)
Wait for non-blocking communication to complete.

epCe

5
Qfo 7 | &
& g
5
-




Non-Blocking Send




Non-Blocking Receive




Handles used for Non-blocking Comms

datatype same as for blocking (MPI_Datatype oOr
INTEGER).

communicator same as for blocking (MPI_Comm or
INTEGER).

request MPI_Request Or INTEGER.

A request handle is allocated when a communication is
initiated.

epCe

5
Qfo 7 | &
&~ g -
o
P




-
Non-blocking Synchronous Send

C:

int MPI TIssend(void* buf, int count,
MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm,
MPI_Request *request)

int MPI_Wait (MPI_Request *request,
MPI_Status *status)
Fortran:

MPI_TSSEND (buf, count, datatype, dest,
tag, comm, request, 1ierror)

MPI_WAIT (request, status, 1lerror)

©)arche €PCC |




e
Non-blocking Receive

C:

int MPI TIrecv(void* buf, int count,
MPI_Datatype datatype, int src,
int tag, MPI_Comm comm,
MPI_Request *request)

int MPI_Wait (MPI_Request *request,
MPI_Status *status)
Fortran:

MPI_TRECV (buf, count, datatype, src,
tag, comm, request, 1ierror)

MPI_WAIT (request, status, 1lerror)

©)=rcher epce




-
Send data from rank 1 to rank 3

! Array of ten integers

integer, dimension(10) :: x
integer :: regnum
integer, dimension (MPI_STATUS_SIZE) :: status

1if (rank .eqg. 1)

CALL MPI ISSEND(x, 10, MPI INTEGER, 3, O,
MPI_COMM_WORLD, regnum, ierr)

1if (rank .eqg. 1)
CALL MPI_WAIT (regnum, status, ilerr)

epCe




-
Blocking and Non-Blocking

Send and receive can be blocking or non-blocking.

A blocking send can be used with a non-blocking receive,
and vice-versa.

Non-blocking sends can use any mode - synchronous,
buffered, standard, or ready.

Synchronous mode affects completion, not initiation.

epCe

5
Y ~7 | €
&~ g -
o
P




-
Communication Modes

NON-BLOCKING OPERATION MPI CALL
Standard send MPI1_ISEND
Synchronous send MPI_ISSEND
Buffered send MPI1_IBSEND
Ready send MPI_IRSEND
Receive MPI1_IRECV

epCe




-
Completion

Waiting versus Testing.

C:
int MPI_Wait (MPI_Request *request,
MPI Status *status)
int MPI_Test (MPI_Request *request,
int *flag,
MPI Status *status)
Fortran:

MPI WAIT (handle, status, 1lerror)

MPI_TEST (handle, flag, status, ierror)

©)=rcher epcc




e
Multiple Communications

Test or wait for completion of one message.
Test or wait for completion of all messages.

Test or wait for completion of as many messages as
possible.

epCe

$
.zfo N7 ¢
&~ g -
o
o




e
Testing Multiple Non-Blocking Comms




Combined Send and Receive

Specify all send / receive arguments in one call

MPI implementation avoids deadlock
useful in simple pairwise communications patterns, but not as
generally applicable as non-blocking

int MPI_Sendrecv(void *sendbuf, int sendcount, MPI_Datatype sendtype,

int dest, int sendtag,
void *recvbuf, int recvcount, MPI_Datatype recvtype,

int source, int recvtag,
MPI Comm comm, MPI_Status *status);

MPI_SENDRECV (sendbuf, sendcount, sendtype, dest, sendtag,
recvbuf, recvcount, recvtype, source, recvtag,

comm, status, ilerror)

©)-rcher




-
Exercise

Rotating information around a ring
See Exercise 4 on the sheet
Arrange processes to communicate round a ring.

Each process stores a copy of its rank in an integer
variable.

Each process communicates this value to its right
neighbour, and receives a value from its left neighbour.

Each process computes the sum of all the values
received.

Repeat for the number of processes involved and print out
the sum stored at each process.

epCe

$
.zfo N7 ¢
&~ g -
o
o




-
Possible solutions

Non-blocking send to forward neighbour
blocking receive from backward neighbour
wait for forward send to complete

Non-blocking receive from backward neighbour
blocking send to forward neighbour
wait for backward receive to complete

Non-blocking send to forward neighbour

Non-blocking receive from backward neighbour
wait for forward send to complete
wait for backward receive to complete

epCe




-
Notes

Your neighbours do not change
send to left, receive from right, send to left, receive from right, ...

You do not alter the data you receive
receive it
add it to you running total
pass the data unchanged along the ring

You must not access send or receive buffers until
communications are complete
cannot read from a receive buffer until after a wait on irecv
cannot overwrite a send buffer until after a wait on issend

epce




