
Non-Blocking Communications



Deadlock

1

5
2

3

4

0Communicator



Completion

• The mode of a communication determines when its 

constituent operations complete.

• i.e. synchronous / asynchronous

• The form of an operation determines when the procedure 

implementing that operation will return

• i.e. when control is returned to the user program



Blocking Operations

• Relate to when the operation has completed.

• Only return from the subroutine call when the operation 

has completed.

• These are the routines you used thus far

• MPI_Ssend

• MPI_Recv



Non-Blocking Operations 

• Return straight away and allow the sub-program to 

continue to perform other work. At some later time the 

sub-program can test or wait for the completion of the 

non-blocking operation.

Beep!



Non-Blocking Operations 

• All non-blocking operations should have matching wait 

operations. Some systems cannot free resources until 

wait has been called.

• A non-blocking operation immediately followed by a 

matching wait is equivalent to a blocking operation.

• Non-blocking operations are not the same as sequential 

subroutine calls as the operation continues after the call 

has returned.



Non-Blocking Communications

• Separate communication into three phases:

• Initiate non-blocking communication.

• Do some work (perhaps involving other communications?)

• Wait for non-blocking communication to complete.



Non-Blocking Send

1

5
2

3

4

0Communicator



Non-Blocking Receive

1

5
2

3

4

0Communicator



Handles used for Non-blocking Comms

• datatype same as for blocking (MPI_Datatype or 

INTEGER).

• communicator same as for blocking (MPI_Comm or 

INTEGER).

• request MPI_Request or INTEGER.

• A request handle is allocated when a communication is 

initiated.



Non-blocking Synchronous Send

• C:

int MPI_Issend(void* buf, int count,

MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm,

MPI_Request *request)

int MPI_Wait(MPI_Request *request,

MPI_Status *status)

• Fortran:

MPI_ISSEND(buf, count, datatype, dest, 

tag, comm, request, ierror)

MPI_WAIT(request, status, ierror)



Non-blocking Receive

• C:

int MPI_Irecv(void* buf, int count,

MPI_Datatype datatype, int src,

int tag, MPI_Comm comm,

MPI_Request *request)

int MPI_Wait(MPI_Request *request,

MPI_Status *status)

• Fortran:

MPI_IRECV(buf, count, datatype, src, 

tag, comm, request, ierror)

MPI_WAIT(request, status, ierror)



Send data from rank 1 to rank 3
! Array of ten integers

integer, dimension(10) :: x

integer :: reqnum

integer, dimension(MPI_STATUS_SIZE) :: status

……

if (rank .eq. 1)

CALL MPI_ISSEND(x, 10, MPI_INTEGER, 3, 0, 

MPI_COMM_WORLD, reqnum, ierr)

……

if (rank .eq. 1)

CALL MPI_WAIT(reqnum, status, ierr)



Blocking and Non-Blocking

• Send and receive can be blocking or non-blocking.

• A blocking send can be used with a non-blocking receive, 

and vice-versa.

• Non-blocking sends can use any mode - synchronous, 

buffered, standard, or ready.

• Synchronous mode affects completion, not initiation.



Communication Modes

NON-BLOCKING OPERATION MPI CALL

Standard send MPI_ISEND

Synchronous send MPI_ISSEND

Buffered send MPI_IBSEND

Ready send MPI_IRSEND

Receive MPI_IRECV



Completion

• Waiting versus Testing.
• C:

int MPI_Wait(MPI_Request *request,

MPI_Status *status)

int MPI_Test(MPI_Request *request,

int *flag, 

MPI_Status *status)

• Fortran:

MPI_WAIT(handle, status, ierror)

MPI_TEST(handle, flag, status, ierror)



Multiple Communications

• Test or wait for completion of one message.

• Test or wait for completion of all messages.

• Test or wait for completion of as many messages as 

possible.



Testing Multiple Non-Blocking Comms

in

in

in

Process



Combined Send and Receive

• Specify all send / receive arguments in one call

• MPI implementation avoids deadlock

• useful in simple pairwise communications patterns, but not as 
generally applicable as non-blocking

int MPI_Sendrecv(void *sendbuf, int sendcount, MPI_Datatype sendtype,

int dest, int sendtag,

void *recvbuf, int recvcount, MPI_Datatype recvtype,

int source, int recvtag,

MPI_Comm comm, MPI_Status *status);

MPI_SENDRECV(sendbuf, sendcount, sendtype, dest,   sendtag,

recvbuf, recvcount, recvtype, source, recvtag,

comm, status, ierror)



Exercise

Rotating information around a ring

• See Exercise 4 on the sheet

• Arrange processes to communicate round a ring.

• Each process stores a copy of its rank in an integer 
variable.

• Each process communicates this value to its right 
neighbour, and receives a value from its left neighbour.

• Each process computes the sum of all the values 
received.

• Repeat for the number of processes involved and print out 
the sum stored at each process.



Possible solutions

• Non-blocking send to forward neighbour
• blocking receive from backward neighbour

• wait for forward send to complete

• Non-blocking receive from backward neighbour
• blocking send to forward neighbour

• wait for backward receive to complete

• Non-blocking send to forward neighbour 

• Non-blocking receive from backward neighbour
• wait for forward send to complete

• wait for backward receive to complete



Notes
• Your neighbours do not change

• send to left, receive from right, send to left, receive from right, …

• You do not alter the data you receive

• receive it

• add it  to you running total

• pass the data unchanged along the ring

• You must not access send or receive buffers until 

communications are complete

• cannot read from a receive buffer until after a wait on irecv

• cannot overwrite a send buffer until after a wait on issend


