Parallel Programming

Thought exercise: traffic modelling

3 WLV E .
<, 5,
C (: ;_‘c T -
A t‘:j :
T A
60 I'N B\)

Traffic Flow

we want to predict traffic flow
— to look for effects such as congestion

* build a computer model

Neuwbridge

Parallel Traffic Modelling

Simple Traffic Model

- divide road into a series of cells
— either occupied or unoccupied

- perform a number of steps
— each step, cars move forward if space ahead is empty

could do this by moving

pawns on a chess board
CSPOCC

N~
i A
= = =
o]
Fa

traffic behaviour

model predicts a number of interesting features

traffic lights

average

: speed
congestion

1.0 S |

more hﬁ f Neuwbridge
complicated o5 1
models are
used in practice 00 =

0% 50% 10096

Parallel Traffic Modelling)

Traffic simulation

« Update rules depend on:
- state of cell
- state of nearest neighbours in both directions
new value

current value new value

current value

n-1

n

n+1

n

n-1

n

n+1

n

epCC

State Table

- If RY(i) = 0, then R™(i) is given by:

RY(i-1) = 0 RY(i-1) = 1
- RYi+1) =0 0 1
- RY(i+1) =1 0 1

- If RY(i) = 1, then R™(i) is given by:

R(i-1) = 0 R -1) = 1
. RY(i+1)=0 0 0
- Ri(i+1) =1 1 1

epCccC

Pseudo Code

declare arrays old(i) and new(i), i =0,1,...,N,N+1
initialise old(i) for i =1,2,...,N-1,N (eg randomly)
loop over iterations
set 01ld(0) = o0ld(N) and set o0ld(N+1l) = old(1)
loop over i =1,...,N
if old(i) =1
if old(i+l) = 1 then new(i) = 1 else new(i) = 0
if old(i) =0
if old(i-1l) = 1 then new(i) = 1 else new(i) =0
end loop over i
set old(i) = new(i) for i =1,2,...,N-1,N
end loop over iterations

epCccC

how fast can we run the model?
- measure speed in Car Operations Per second

— how many COPs?

* around 2 COPsS' g . sionwg ———

. 0o ;‘ Ja ¥

&‘“‘\hl JL. o '

* but what about tIe&: DR
— can they do six g Qs,’;_‘ ;f~. .-

Parallel Traffic Modelling

a parallel traffic model

Pseudo Code (with subroutines)

declare arrays old(i) and new(i), i =0,1,...,N,N+1
initialise old(i) for i =1,2,...,N-1,N (eg randomly)
loop over iterations
! Implement boundary conditions
set 01ld(0) = o0ld(N) and set o0ld(N+1l) = old(1)
! Update road
call newroad (new, old, N)
! Prepare for next iteration
set old(i) = new(i) for 1 =1,2,...,N-1,N
end loop over iterations

10 HPC Concantce

L
Pseudo Code (distributed memory)

! assume we are running on P processes
declare arrays old(i) and new(i), i = 0,1,...,N/P,N/P+1
initialise o0ld(i) for i =1,2,...,N/P-1,N/P (eg randomly)
loop over iterations
! Implement boundary conditions (processes arranged as a ring)
set 01ld(0) on this process to old(N/P) from previous process
set 0ld(N/P+1) on this process to old(l) from next process
! Update road
call newroad(new, old, N/P)

! Prepare for next iteration

set o0ld(i) = new(i) for i 1,2,...,N/P-1,N/P

end loop over iterations

epCccC

11 HPC Concantce

L
Halo swapping

! Implement boundary conditions
set 01ld(0) on this process to old(N/P) from previous process
set 0ld(N/P+1) on this process to old(l) from next process

- Implement this using blocking receives (e.g. MPIl_Recv) and:

- synchronous send (routine blocks until message is received)
- e.g. MPI_Ssend

* Or
- asynchronous send (message copied into buffer, returns straight away)
- e.g. MPI_Bsend

* Or
- non-blocking synchronous send (no buffering but immediate return)

. e.9. MPI_Issend / MPI_Wait |epCC

Traffic Modellina

L
Synchronous sends

! Implement boundary conditions

Ssend (old (N/P), up)
Recv (o0ld(1l), down)
Ssend (old (1), down)

Recv (0ld(N/P+1), up)

- Guaranteed to deadlock

epCccC

Traffic Modellina

Asynchronous (buffered) sends

Bsend (old (N/P) , up)
Recv (o0ld(1l), down)
Bsend (old (1), down)

Recv (o0ld(N/P+1), up)
call newroad(new, old, N/P)
set old(i) = new(i) for i =1,2,...,N/P-1,N/P

- Where do synchronisation issues become important?
call newroad(new, old, N/P) ?

- OK because we are writing new but only reading old
- set 0old(i) = new(i) ?
- only OK because Bsend has copied o1d (1) and old (N/P)
- We don'’t really care if/when the message is received
- we do really care ifiwhen we can safely reuse the local send buffers S

Traffic Modellina

D
Standard sends

Send (old (N/P) , up)

Recv (o0ld(1l), down)

Send (old (1), down)

Recv (o0ld(N/P+1), up)

call newroad(new, old, N/P)

set old(i) = new(i) for i =1,2,...,N/P-1,N/P

- Might deadlock

- MPI_Send can be implemented as synchronous send (MPI_Ssend) or
buffered send (MPI_Bsend) but you do not know which

- In practice
- buffered for small messages
- synchronous for large messages

epCccC

Traffic Modellina

L
Non-blocking (immediate) sends

! Implement boundary conditions

Issend (old (N/P), up)
Recv (old(1l), down)
Issend(old (1), down)

Recv (0ld(N/P+1), up)
call newroad(new, old, N/P)
set old(i) = new(i) for i =1,2,...,N/P-1,N/P)
! Wait for communications to complete before next iteration
wait (up)
wait (down)

- Incorrect!

- overwriting old is the key issue
- need to know boundary values of old are sent before overwritiag;

EPC

Traffic Modellina

Non-blocking sends: correct

! Implement boundary conditions

Issend (old (N/P), up)
Recv (old(1l), down)
Issend(old (1), down)

Recv (0ld(N/P+1), up)
call newroad(new, old, N/P)
wait (up)

wait (down)

set 0ld(i) = new(i) for i 1,2,...,N/P-1,N/P)

epCccC

Traffic Modellina

L
Delaying the waits

! Implement boundary conditions

Issend (old (N/P), up)
Recv (old(1l), down)
Issend(old (1), down)

Recv (0ld(N/P+1), up)
call newroad(new, old, N/P)
set 0ld(i) = new(i) for i

2,3,...,N/P-1)
wait (up)

0ld (N/P = new(N/P)

wait (down)

old(1l) = new(1l)

epCccC

Traffic Modellina

