
David Henty, Fiona Reid

Advanced Parallel Programming
Communicator Management

Split communicators 2

Overview

• Lecture will cover

– Communicators in MPI

– Manipulating communicators

– Examples of usage:

– Optimising communications on hierarchical systems

– Task farms

• Practical

– Implementing an “Allreduce” over rows and columns

http://www.epcc.ed.ac.uk/

Split communicators 3

Communicators

• All MPI communications take place within a communicator

– a group of processes with necessary information for message passing

– there is one pre-defined communicator: MPI_COMM_WORLD

– contains all the available processes

• Messages move within a communicator

– E.g., point-to-point send/receive must use same communicator

– Collective communications occur in single communicator

– unlike tags, it is not possible to use a wildcard

rank=6
rank=2

rank=1 rank=3

rank=0 rank=4

rank=5 size=7

MPI_COMM_WORLD

http://www.epcc.ed.ac.uk/

Split communicators 4

Use of communicators

• Question: Can I just use MPI_COMM_WORLD for everything?

• Answer: Yes

– many people use MPI_COMM_WORLD everywhere in their MPI programs

• Better programming practice suggests

– abstract the communicator using the MPI handle

– such usage offers very powerful benefits

MPI_Comm comm; /* or INTEGER for Fortran */

comm = MPI_COMM_WORLD;

...

MPI_Comm_rank(comm, &rank);

MPI_Comm_size(comm, &size);

....

http://www.epcc.ed.ac.uk/

Split communicators 5

Split Communicators

• It is possible to sub-divide communicators

• E.g.,split MPI_COMM_WORLD

– Two sub-communicators can have the same or differing sizes

– Each process has a new rank within each sub communicator

– Messages in different communicators guaranteed not to interact

rank=6
rank=2

rank=1 rank=3

rank=0 rank=4

rank=5 size=7

rank=2

MPI_COMM_WORLD

rank=0
rank=1 rank=3 size=4

size=3

comm1
comm2

rank=2 rank=0

rank=1

http://www.epcc.ed.ac.uk/

Split communicators 6

MPI interface

• MPI_Comm_split()

– splits an existing communicator into disjoint (i.e. non-overlapping)

subgroups

• Syntax, C:

 int MPI_Comm_split(MPI_Comm comm, int colour, int

 key, MPI_Comm *newcomm)

• Fortran:

 MPI_COMM_SPLIT(COMM, COLOUR, KEY, NEWCOMM, IERROR)

 INTEGER COMM, COLOUR, KEY, NEWCOMM, IERROR

• colour – controls assignment to new communicator

• key – controls rank assignment within new communicator

http://www.epcc.ed.ac.uk/

Split communicators 7

What happens…

• MPI_Comm_split() is collective

– must be executed by all processes in group associated with comm

• New communicator is created

– for each unique value of colour

– All processes having the same colour will be in the same sub-

communicator

• New ranks 0…size-1

– determined by the (ascending) value of the key

– If keys are same, then MPI determines the new rank

– Processes with the same colour are ordered according to their key

• Allows for arbitrary splitting

– other routines for particular cases, e.g. MPI_Cart_sub

http://www.epcc.ed.ac.uk/

Split communicators 8

Split Communicators – C example

 MPI_Comm comm, newcomm;

 int colour, rank, size;

 comm = MPI_COMM_WORLD;

 MPI_Comm_rank(comm, &rank);

 /* Set colour depending on rank: Even numbered ranks have

 colour = 0, odd have colour = 1 */

 colour = rank%2;

 MPI_Comm_split(comm, colour, rank, &newcomm);

 MPI_Comm_size (newcomm, &size);

 MPI_Comm_rank (newcomm, &rank);

http://www.epcc.ed.ac.uk/

Split communicators 9

Split Communicators – Fortran example

 integer :: comm, newcomm

 integer :: colour, rank, size, errcode

 comm = MPI_COMM_WORLD

 call MPI_COMM_RANK(comm, rank, errcode)

 ! Again, set colour according to rank

 colour = mod(rank,2)

 call MPI_COMM_SPLIT(comm, colour, rank, newcomm,&

errcode)

 MPI_COMM_SIZE(newcomm, size, errcode)

 MPI_COMM_RANK(newcomm, rank, errcode)

http://www.epcc.ed.ac.uk/

Split communicators 10

Diagrammatically

• Rank and size of the new communicator

0 1 2 4 3
MPI_COMM_WORLD, size=5

color = rank%2;

key = rank;

newcomm, color=0, size=3

newcomm, color=1, size=2

0

0 1

1 2

key=0 key=2 key=4

key=1 key=3

http://www.epcc.ed.ac.uk/

Split communicators 11

Duplicating Communicators

• MPI_Comm_dup()

– creates a new communicator of the same size

– but a different context

• Syntax, C:

 int MPI_Comm_dup(MPI_Comm comm,

 MPI_Comm *newcomm)

• Fortran:

 MPI_COMM_DUP(COMM, NEWCOMM, IERROR)

 INTEGER COMM, NEWCOMM, IERROR

http://www.epcc.ed.ac.uk/

Split communicators 12

Using Duplicate Communicators

• An important use is for libraries

– Library code should not use same communicator(s) as

user code

– Possible to mix up user and library messages

– Almost certain to be fatal

• Instead, can duplicate the user’s communicator

– Encapsulated in library (hidden from user)

– Use new communicator for library messages

– Messages guaranteed not to interfere with user messages

– Could try to do this by reserving tags in MPI (tricky) but

wildcarding of tags can still create problems

http://www.epcc.ed.ac.uk/

Split communicators 13

Freeing Communicators

• MPI_Comm_free()

– a collective operation which destroys an unwanted communicator

• Syntax, C:

 int MPI_Comm_free(MPI_Comm * comm)

• Fortran:

 MPI_COMM_FREE(COMM, IERROR)

 INTEGER COMM, IERROR

– Any pending communications which use the communicator will
complete normally

– Deallocation occurs only if there are no more active references to the
communication object

http://www.epcc.ed.ac.uk/

Split communicators 14

Advantages of Communicators

• Many requirements can be met by using communicators

– Can’t I just do this all with tags?

– Possibly, but difficult, painful and error-prone

• Easier to use collective communications than point-to-point

– Where subsets of MPI_COMM_WORLD are required

– E.g., averages over coordinate directions in Cartesian grids

• In dynamic problems

– Allows controlled assignment of different groups of processors to

different tasks at run time

http://www.epcc.ed.ac.uk/

Split communicators 15

Applications, for example

• Linear algebra

– row or column operations or act on specific regions of a matrix

(diagonal, upper triangular etc)

• Hierarchical problems

– Multi-grid problems e.g. overlapping grids or grids within grids

– Adaptive mesh refinement

– E.g. complexity may not be known until code runs, can use split

comms to assign more processors to a part of the problem

• Taking advantage of locality

– Especially for communication (e.g. group processors by node)

• Multiple instances of same parallel problem

– Task farms

http://www.epcc.ed.ac.uk/

Split communicators 16

Fast and slow communication

• Many systems now hierarchical / heterogeneous

– Chips with shared memory cores

– “Nodes” of many chips with shared memory

– Groups of nodes connected by an interconnect

– Assume a “node” shares memory and communication hardware

SWITCH

http://www.epcc.ed.ac.uk/

Split communicators 17

Message passing

• MPI may have two modes of operation

– One optimised for use within a node (intra-node) via shared memory

– One for communicating between nodes (inter-node) via network

• Performance may be quite different

– E.g. for HPCx (previous national supercomputer: IBM)

– MPI latency within node (shared memory) ~3µs

– MPI latency between nodes (network) ~6µs

– HECToR (current national supercomputer: Cray)

– on-node MPI latency XE6 and XT4 ~0.5µs

– off-node MPI latency 1.4µs (XE6) and 6.0µs (XT4)

• Do we benefit from this automatically?

– May depend on the implementation of MPI

– If MPI doesn’t help, can try for ourselves using communicators

http://www.epcc.ed.ac.uk/

Split communicators 18

Intra/Inter node communications on HPCx

• Results from Ping Pong Intel MPI benchmark

http://www.epcc.ed.ac.uk/

Split communicators 19

Intra/Inter node communications on HPCx

• Results from Ping Pong Intel MPI benchmark

http://www.epcc.ed.ac.uk/

Split communicators 20

Using intra-node and inter-node messages

• Can we take advantage of the difference

– E.g., to improve the performance of “Allreduce”

• So, want to reduce expensive operations

– number of inter-node messages (latency)

– the amount of data sent between nodes (bandwidth)

• Trade off against

– Additional (cheap) intra-node communication

http://www.epcc.ed.ac.uk/

Split communicators 21

A Solution

• Split global communicator at node boundaries

• How to do this?

– Need a way to identify hardware from software

– i.e. need to know which physical processors reside on which physical

nodes

• For example,

– Use MPI_Get_processor_name()

– to give a unique string for different nodes

– e.g., on HPCx: l4f403, l1f405, etc

• Assume we have a function

– int name_to_colour(const char *string)

– Returns a unique integer for any given string

http://www.epcc.ed.ac.uk/

Split communicators 22

A Solution continued

• Pseudo code for the function might look like

 hash = 0

 For each byte c in name

 hash -> 131*hash + c

– Creates a unique hash value for each node name

– 131 is used to avoid collisions

– On many systems node names only differ by numerical digits.

– E.g. node names l4f403, l1f405 equate to 1169064111 and

2052563872 respectively

http://www.epcc.ed.ac.uk/

Split communicators 23

Intra-node communicator

• Use this number to split the input communicator

 MPI_Get_processor_name(procname,&len);

 node_key = name_to_colour(procname);

 MPI_Comm_split(input,node_key,0,&local);

• local is now a communicator for the local node

• Now we can make communicators across nodes

 MPI_Comm_rank(local,&lrank);

 MPI_Comm_split(input,lrank,0,&cross);

http://www.epcc.ed.ac.uk/

Split communicators 24

Allreduce with two nodes

Perform an allreduce (sum) across each node – all comms inside a node

0 1 2 3 0 2 4 6

rank=0 rank=0

Perform an allreduce (sum) across nodes for rank=0 – comms between nodes

6 6 6 6 12 12 12 12

18 6 6 6 18 12 12 12

Broadcast result with each node – all comms inside a node

18 18 18 18 18 18 18 18

All processors across nodes now have the same value

http://www.epcc.ed.ac.uk/

Split communicators 25

Sample results

• Results from Allreduce across 2 nodes of HPCx

http://www.epcc.ed.ac.uk/

Split communicators 26

Summary

• Communicators in MPI

– Many manipulations possible

– A powerful mechanism

– Learn to use!

• Applications of split communicators

– Increasing locality of communication

• Collectives

– hope that MPI implementations do this automatically …

– manual implementation of Allreduce a good test example

– … is there a benefit on HECToR?

http://www.epcc.ed.ac.uk/

