
Parallel Models
Different ways to exploit parallelism

Outline

• Shared-Variables Parallelism

• threads

• shared-memory architectures

• Message-Passing Parallelism

• processes

• distributed-memory architectures

• Practicalities

• usage on real HPC architectures

Shared Variables

Threads-based parallelism

Shared-memory concepts

• Have already covered basic concepts

• threads can all see data of parent process

• can run on different cores

• potential for parallel speedup

Analogy

• One very large whiteboard in a two-person office

• the shared memory

• Two people working on the same problem

• the threads running on different cores attached to the memory

• How do they collaborate?

• working together

• but not interfering

• Also need private data

my

data

shared

data
my

data

Threads

PC PC PC Private data Private data Private data

Shared data

Thread 1 Thread 2 Thread 3

6

Thread 1 Thread 2

mya=23

mya=a+1

23

23 24

Program

Private

data

Shared

data

a=mya

Thread Communication

Synchronisation

• Synchronisation crucial for shared variables approach

• thread 2’s code must execute after thread 1

• Most commonly use global barrier synchronisation

• other mechanisms such as locks also available

• Writing parallel codes relatively straightforward

• access shared data as and when its needed

• Getting correct code can be difficult!

Specific example
• Computing asum = a0+ a1 + … a7

• shared:

• main array: a[8]

• result: asum

• private:

• loop counter: i

• loop limits: istart, istop

• local sum: myasum

• synchronisation:

• thread0: asum += myasum

• barrier

• thread1: asum += myasum

loop: i = istart,istop

 myasum += a[i]

end loop

asum

asum=0

Hardware

Memory

Processor

Shared Bus

Processor Processor Processor Processor

• Needs support of a shared-memory architecture

 Single Operating System

10

Thread Placement: Shared Memory

OS

User

T T T T T T T T T T T T T T T T

11

Threads in HPC
• Threads existed before parallel computers

• Designed for concurrency

• Many more threads running than physical cores

• scheduled / descheduled as and when needed

• For parallel computing

• Typically run a single thread per core

• Want them all to run all the time

• OS optimisations

• Place threads on selected cores

• Stop them from migrating

12

Practicalities
• Threading can only operate within a single node

• Each node is a shared-memory computer (e.g. 24 cores on ARCHER)

• Controlled by a single operating system

• Simple parallelisation

• Speed up a serial program using threads

• Run an independent program per node (e.g. a simple task farm)

• More complicated

• Use multiple processes (e.g. message-passing – next)

• On ARCHER: could run one process per node, 24 threads per

process

• or 2 procs per node / 12 threads per process or 4 / 6 ...

13

Threads: Summary

• Shared blackboard a good analogy for thread parallelism

• Requires a shared-memory architecture

• in HPC terms, cannot scale beyond a single node

• Threads operate independently on the shared data

• need to ensure they don’t interfere; synchronisation is crucial

• Threading in HPC usually uses OpenMP directives

• supports common parallel patterns

• e.g. loop limits computed by the compiler

• e.g. summing values across threads done automatically

Message Passing

Process-based parallelism

Analogy

• Two whiteboards in different single-person offices

• the distributed memory

• Two people working on the same problem

• the processes on different nodes attached to the interconnect

• How do they collaborate?

• to work on single problem

• Explicit communication

• e.g. by telephone

• no shared data

my

data

my

data

a=23 Recv(1,b)
Process 1 Process 2

23

23

24

23

Program

Data

Send(2,a) a=b+1

Process communication

Synchronisation

• Synchronisation is automatic in message-passing

• the messages do it for you

• Make a phone call …

• … wait until the receiver picks up

• Receive a phone call

• … wait until the phone rings

• No danger of corrupting someone else’s data

• no shared blackboard

Communication modes

• Sending a message can either be synchronous or

asynchronous

• A synchronous send is not completed until the message

has started to be received

• An asynchronous send completes as soon as the

message has gone

• Receives are usually synchronous - the receiving process

must wait until the message arrives

19

Synchronous send

• Analogy with faxing a letter.

• Know when letter has started to be received.

20

Asynchronous send

• Analogy with posting a letter.

• Only know when letter has been posted, not when it has been

received.

21

Point-to-Point Communications

• We have considered two processes

• one sender

• one receiver

• This is called point-to-point communication

• simplest form of message passing

• relies on matching send and receive

• Close analogy to sending personal emails

22

Collective Communications

• A simple message communicates between two processes

• There are many instances where communication between

groups of processes is required

• Can be built from simple messages, but often

implemented separately, for efficiency

23

Broadcast: one to all communication

24

Broadcast

• From one process to all others

8

8 8

8

8

8

25

Scatter

• Information scattered to many processes

0 1 2 3 4 5

0

1

3

4

5

2

26

Gather

• Information gathered onto one process

0 1 2 3 4 5

0

1

3

4

5

2

27

Reduction Operations

• Combine data from several processes to form a single result

Strike?

28

Reduction

• Form a global sum, product, max, min, etc.

0

1

3

4

5

2

15

29

Hardware

• Natural map to

distributed-memory

• one process per

processor-core

• messages go over

the interconnect,

between nodes/OS’s

Processor

Processor

Processor

Processor

Processor

Processor

Processor
Processor

Interconnect

Processes: Summary

• Processes cannot share memory

• ring-fenced from each other

• analogous to white boards in separate offices

• Communication requires explicit messages

• analogous to making a phone call, sending an email, …

• synchronisation is done by the messages

• Almost exclusively use Message-Passing Interface

• MPI is a library of function calls / subroutines

Practicalities
• 8-core machine might only have 2

nodes

• how do we run MPI on a real HPC
machine?

• Mostly ignore architecture

• pretend we have single-core nodes

• one MPI process per processor-core

• e.g. run 8 processes on the 2 nodes

• Messages between processor-
cores on the same node are fast

• but remember they also share access
to the network

Interconnect

Message Passing on Shared Memory

• Run one process per core

• don’t directly exploit shared memory

• analogy is phoning your office mate

• actually works well in practice!

my

data

my

data

• Message-passing

programs run by a

special job launcher

• user specifies #copies

• some control over

allocation to nodes

Summary

• Shared-variables parallelism

• uses threads

• requires shared-memory machine

• easy to implement but limited scalability

• in HPC, done using OpenMP compilers

• Distributed memory

• uses processes

• can run on any machine: messages can go over the interconnect

• harder to implement but better scalability

• on HPC, done using the MPI library

