
Parallel Programming 
Patterns 

Overview and Concepts 



Outline 
• Why parallel programming? 

• Decomposition 
•  Geometric decomposition 
•  Task farm 
•  Pipeline 
•  Loop parallelism 
 

• Performance metrics and scaling 
• Amdahl’s law 
• Gustafson’s law 

Practical 



Why use parallel programming? 
It is harder than serial so why bother? 



Why? 
•  Parallel programming is more difficult than its sequential 

counterpart 

•  However we are reaching limitations in uniprocessor design 
•  Physical limitations to size and speed of a single chip 
•  Developing new processor technology is very expensive 
•  Some fundamental limits such as speed of light and size of atoms 

•  Parallelism is not a silver bullet 
•  There are many additional considerations 
•  Careful thought is required to take advantage of parallel machines 



Performance 
•  A key aim is to solve problems faster 

•  To improve the time to solution 
•  Enable new scientific problems to be solved 

•  To exploit parallel computers, we need to split the program up 
between different processors 

•  Ideally, would like program to run P times faster on P 
processors 
•  Not all parts of program can be successfully split up 
•  Splitting the program up may introduce additional overheads such as 

communication 



Parallel tasks 
• How we split a problem up in parallel is critical 

1.  Limit communication (especially the number of messages) 
2.  Balance the load so all processors are equally busy 

•  Tightly coupled problems require lots of interaction 
between their parallel tasks 

• Embarrassingly parallel problems require very little (or no) 
interaction between their parallel tasks 
•  E.g. the image sharpening exercise 

•  In reality most problems sit somewhere between two 
extremes 

Sharpen 



Decomposition 
How do we split problems up to solve efficiently in parallel? 



Decomposition 
• One of the most challenging, but also most important, 

decisions is how to split the problem up 

• How you do this depends upon a number of factors 
•  The nature of the problem 
•  The amount of communication required 
•  Support from implementation technologies 

• We are going to look at some frequently used 
decompositions 

CFD 



Geometric decomposition 
•  Take advantage of the geometric properties of a problem 

Image from ITWM: http://www.itwm.fraunhofer.de/en/departments/flow-and-
material-simulation/mechanics-of-materials/domain-decomposition-and-parallel-
mesh-generation.html



Geometric decomposition 
• Splitting the problem up does have an associated cost 

•  Namely communication between processors  
•  Need to carefully consider granularity 
•  Aim to minimise communication and maximise computation 



Halo swapping 
• Swap data in bulk at pre-

defined intervals 

• Often only need 
information on the 
boundaries 

• Many small messages 
result in far greater 
overhead 



• Execution time determined by slowest processor 
•  each processor should have (roughly) the same amount of work, 

i.e. they should be load balanced 

• Assign multiple partitions per processor 
•  Additional techniques such as work stealing available 

Load imbalance 
Fractal 



Task farm (master worker) 
• Split the problem up into distinct, independent, tasks 

• Master process sends task to a worker 
• Worker process sends results back to the master 
•  The number of tasks is often much greater than the 

number of workers and tasks get allocated to idle workers 

Master

Worker 3Worker 2Worker 1 Worker n…

Fractal 



Task farm considerations 
• Communication is between the master and the workers 

•  Communication between the workers can complicate things 

•  The master process can become a bottleneck 
•  Workers are idle waiting for the master to send them a task or 

acknowledge receipt of results 
•  Potential solution: implement work stealing 

• Resilience – what happens if a worker stops responding? 
•  Master could maintain a list of tasks and redistribute that work’s 

work 



Pipelines 
• A problem involves operating on many pieces of data in 

turn. The overall calculation can be viewed as data 
flowing through a sequence of stages and being operated 
on at each stage. 

• Each stage runs on a processor, each processor 
communicates with the processor holding the next stage 

• One way flow of data 
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• Each processor (one per colour) is responsible for a 

different task or stage of the pipeline 
• Each processor acts on data (numbered) as they move 

through the pipeline 
 

Example: pipeline with 4 processors 

Data Result

1 

2 1 

3 2 1 

4 3 2 1 



Examples of pipelines 
• CPU architectures 

•  Fetch, decode, execute, write back 
•  Intel Pentium 4 had a 20 stage pipeline 

• Unix shell 
•  i.e. cat datafile | grep “energy” | awk ‘{print $2, $3}’ 

• Graphics/GPU pipeline 

• A generalisation of pipeline (a workflow, or dataflow) is 
becoming more and more relevant to large, distributed 
scientific workflows 

• Can combine the pipeline with other decompositions 



Loop parallelism 
• Serial programs can often be dominated by 

computationally intensive loops. 
• Can be applied incrementally, in small steps based upon a 

working code 
•  This makes the decomposition very useful 
•  Often large restructuring of the code is not required 

•  Tends to work best with small scale parallelism 
•  Not suited to all architectures 
•  Not suited to all loops 

•  If the runtime is not dominated by loops, or some loops 
can not be parallelised then these factors can dominate 
(Amdahl’s law.) 

OpenMP Sharpen 



Example of loop parallelism: 

•  If we ignore all parallelisation directives then should just 
run in serial 

•  Technologies have lots of additional support for tuning this 



Performance metrics 
How is my parallel code performing and scaling? 



Performance metrics 
 • Measure the execution time T 

•  how do we quantify performance improvements? 
 

• Speed up 
•  typically S(N,P) < P

 
• Parallel efficiency 

•  typically E(N,P) < 1 

• Serial efficiency 
•  typically E(N) <= 1 

Where N is the size of the problem and P the number of processors 



Scaling 
• Scaling is how the performance of a parallel application 

changes as the number of processors is increased 

•  There are two different types of scaling: 
•  Strong Scaling – total problem size stays the same as the number 

of processors increases 
•  Weak Scaling – the problem size increases at the same rate as the 

number of processors, keeping the amount of work per processor 
the same 

• Strong scaling is generally more useful and more difficult 
to achieve than weak scaling 



Strong scaling 
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Weak scaling 
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The serial section of code 
“The performance improvement to be gained by parallelisation is limited 
by the proportion of the code which is serial” 

Gene Amdahl, 1967 
 

        



•  A typical program has two categories of components 
•  Inherently sequential sections: can’t be run in parallel 
•  Potentially parallel sections 

•  A fraction, α, is completely serial 
•  Assuming parallel part is 100% efficient: 

•  Parallel runtime 
 

•  Parallel speedup 

•  We are fundamentally limited by the serial fraction 
•  For α = 0, S = P as expected (i.e. efficiency = 100%) 
•  Otherwise, speedup limited by 1/ α for any P

•  For α = 0.1; 1/0.1 = 10 therefore 10 times maximum speed up 
•  For α = 0.1; S(N, 16) = 6.4, S(N, 1024) = 9.9 

Amdahl’s law 
Sharpen & CFD 

T (N,P) =αT (N,1)+ (1−α)T (N,1)
P

S(N,P) = T (N,1)
T (N,P)

=
P

αP + (1−α)



• We need larger problems for larger numbers of CPUs 

• Whilst we are still limited by the serial fraction, it becomes 
less important 

Gustafson’s Law 



Utilising Large Parallel Machines 
• Assume parallel part is proportional to N

•  serial part is independent of N
•  time 

 

•  speedup 

•  Scale problem size with CPUs, i.e. set N = P  (weak scaling) 
•  speedup  S(P,P)  = α + (1-α) P 
•  efficiency  E(P,P) = α/P + (1-α)

T (N,P) = Tserial (N,P)+Tparallel (N,P)

            =αT (1,1)+ (1−α) N  T (1,1)
P

S(N,P) = T (N,1)
T (N,P)

=
α + (1−α)N
α + (1−α) N

P

T (N,1) =αT (1,1)+ (1−α) N  T(1,1)



•  If you increase the amount of work done by each parallel 
task then the serial component will not dominate 
•  Increase the problem size to maintain scaling 
•  Can do this by adding extra complexity or increasing the overall 

problem size 
 

Gustafson’s Law 
CFD 

Due to the scaling 
of N, the serial 
fraction effectively 
becomes α/P

Number of 
processors 

Strong scaling 
(Amdahl’s law) 

 

Weak scaling 
(Gustafson’s law) 

16 6.4 14.5 

1024 9.9 921.7 



Analogy: Flying London to New York 



Buckingham Palace to Empire State 
• By Jumbo Jet 

•  distance: 5600 km; speed: 700 kph 
•  time: 8 hours ? 

• No! 
•  1 hour by tube to Heathrow + 1 hour for check in etc. 
•  1 hour immigration + 1 hour taxi downtown 
•  fixed overhead of 4 hours; total journey time: 4 + 8 = 12 hours 

•  Triple the flight speed with Concorde to 2100 kph 
•  total journey time = 4 hours +  2 hours 40 mins  = 6.7 hours 
•  speedup of 1.8 not 3.0 

• Amdahl’s law! α = 4/12 = 0.33; max speedup = 3 (i.e. 4 hours) 



Flying London to Sydney 



Buckingham Palace to Sydney Opera 
•  By Jumbo Jet 

•  distance: 16800 km; speed: 700 kph; flight time; 24 hours 
•  serial overhead stays the same: total time: 4 + 24 = 28 hours 

•  Triple the flight speed 
•  total time = 4 hours + 8 hours = 12 hours 
•  speedup = 2.3 (as opposed to 1.8 for New York) 

•  Gustafson’s law! 
•  bigger problems scale better 
•  increase both distance (i.e. N) and max speed (i.e. P) by three 
•  maintain same balance: 4 “serial” + 8 “parallel” 



Load Imbalance 
•  These laws all assumed all processors are equally busy 

•  what happens if some run out of work? 
• Specific case 

•  four people pack boxes with cans of soup: 1 minute per box 

 
•  takes 6 minutes as everyone is waiting for Anna to finish! 
•  if we gave everyone same number of boxes, would take 3 minutes 

• Scalability isn’t everything 
•  make the best use of the processors at hand before increasing the 

number of processors 

Person Anna Paul David Helen Total 
# boxes 6 1 3 2 12 



Quantifying Load Imbalance 
• Define Load Imbalance Factor 
 

LIF = maximum load / average load
 

•  for perfectly balanced problems LIF = 1.0, as expected 
•  in general, LIF > 1.0
•  LIF tells you how much faster your calculation could be with 

balanced load 

• Box packing 
•  LIF = 6/3 = 2 
•  initial time = 6 minutes 
•  best time = LIF / 2 = 3 minutes 



Summary 
•  There are many considerations when parallelising code 
 
•  A variety of patterns exist that can provide well known approaches to 

parallelising a serial problem 
•  You will see examples of some of these during the practical sessions 

•  Scaling is important, as the more a code scales the larger a machine it 
can take advantage of 
•  can consider weak and strong scaling 
•  in practice, overheads limit the scalability of real parallel programs 
•  Amdahl’s law models these in terms of serial and parallel fractions 
•  larger problems generally scale better: Gustafson’s law 

•  Load balance is also a crucial factor 

•  Metrics exist to give you an indication of how well your code performs 
and scales 

 


