
Parallel Programming
Patterns

Overview and Concepts

Outline
• Why parallel programming?

• Decomposition
•  Geometric decomposition
•  Task farm
•  Pipeline
•  Loop parallelism

• Performance metrics and scaling
• Amdahl’s law
• Gustafson’s law

Practical

Why use parallel programming?
It is harder than serial so why bother?

Why?
•  Parallel programming is more difficult than its sequential

counterpart

•  However we are reaching limitations in uniprocessor design
•  Physical limitations to size and speed of a single chip
•  Developing new processor technology is very expensive
•  Some fundamental limits such as speed of light and size of atoms

•  Parallelism is not a silver bullet
•  There are many additional considerations
•  Careful thought is required to take advantage of parallel machines

Performance
•  A key aim is to solve problems faster

•  To improve the time to solution
•  Enable new scientific problems to be solved

•  To exploit parallel computers, we need to split the program up
between different processors

•  Ideally, would like program to run P times faster on P
processors
•  Not all parts of program can be successfully split up
•  Splitting the program up may introduce additional overheads such as

communication

Parallel tasks
• How we split a problem up in parallel is critical

1.  Limit communication (especially the number of messages)
2.  Balance the load so all processors are equally busy

•  Tightly coupled problems require lots of interaction
between their parallel tasks

• Embarrassingly parallel problems require very little (or no)
interaction between their parallel tasks
•  E.g. the image sharpening exercise

•  In reality most problems sit somewhere between two
extremes

Sharpen

Decomposition
How do we split problems up to solve efficiently in parallel?

Decomposition
• One of the most challenging, but also most important,

decisions is how to split the problem up

• How you do this depends upon a number of factors
•  The nature of the problem
•  The amount of communication required
•  Support from implementation technologies

• We are going to look at some frequently used
decompositions

CFD

Geometric decomposition
•  Take advantage of the geometric properties of a problem

Image from ITWM: http://www.itwm.fraunhofer.de/en/departments/flow-and-
material-simulation/mechanics-of-materials/domain-decomposition-and-parallel-
mesh-generation.html

Geometric decomposition
• Splitting the problem up does have an associated cost

•  Namely communication between processors
•  Need to carefully consider granularity
•  Aim to minimise communication and maximise computation

Halo swapping
• Swap data in bulk at pre-

defined intervals

• Often only need
information on the
boundaries

• Many small messages
result in far greater
overhead

• Execution time determined by slowest processor
•  each processor should have (roughly) the same amount of work,

i.e. they should be load balanced

• Assign multiple partitions per processor
•  Additional techniques such as work stealing available

Load imbalance
Fractal

Task farm (master worker)
• Split the problem up into distinct, independent, tasks

• Master process sends task to a worker
• Worker process sends results back to the master
•  The number of tasks is often much greater than the

number of workers and tasks get allocated to idle workers

Master

Worker 3Worker 2Worker 1 Worker n…

Fractal

Task farm considerations
• Communication is between the master and the workers

•  Communication between the workers can complicate things

•  The master process can become a bottleneck
•  Workers are idle waiting for the master to send them a task or

acknowledge receipt of results
•  Potential solution: implement work stealing

• Resilience – what happens if a worker stops responding?
•  Master could maintain a list of tasks and redistribute that work’s

work

Pipelines
• A problem involves operating on many pieces of data in

turn. The overall calculation can be viewed as data
flowing through a sequence of stages and being operated
on at each stage.

• Each stage runs on a processor, each processor
communicates with the processor holding the next stage

• One way flow of data

St
ag

e
1

St
ag

e
2

St
ag

e
3

St
ag

e
4

St
ag

e
5Data Result

• Each processor (one per colour) is responsible for a

different task or stage of the pipeline
• Each processor acts on data (numbered) as they move

through the pipeline

Example: pipeline with 4 processors

Data Result

1

2 1

3 2 1

4 3 2 1

Examples of pipelines
• CPU architectures

•  Fetch, decode, execute, write back
•  Intel Pentium 4 had a 20 stage pipeline

• Unix shell
•  i.e. cat datafile | grep “energy” | awk ‘{print $2, $3}’

• Graphics/GPU pipeline

• A generalisation of pipeline (a workflow, or dataflow) is
becoming more and more relevant to large, distributed
scientific workflows

• Can combine the pipeline with other decompositions

Loop parallelism
• Serial programs can often be dominated by

computationally intensive loops.
• Can be applied incrementally, in small steps based upon a

working code
•  This makes the decomposition very useful
•  Often large restructuring of the code is not required

•  Tends to work best with small scale parallelism
•  Not suited to all architectures
•  Not suited to all loops

•  If the runtime is not dominated by loops, or some loops
can not be parallelised then these factors can dominate
(Amdahl’s law.)

OpenMP Sharpen

Example of loop parallelism:

•  If we ignore all parallelisation directives then should just
run in serial

•  Technologies have lots of additional support for tuning this

Performance metrics
How is my parallel code performing and scaling?

Performance metrics
 • Measure the execution time T

•  how do we quantify performance improvements?

• Speed up
•  typically S(N,P) < P

• Parallel efficiency

•  typically E(N,P) < 1

• Serial efficiency
•  typically E(N) <= 1

Where N is the size of the problem and P the number of processors

Scaling
• Scaling is how the performance of a parallel application

changes as the number of processors is increased

•  There are two different types of scaling:
•  Strong Scaling – total problem size stays the same as the number

of processors increases
•  Weak Scaling – the problem size increases at the same rate as the

number of processors, keeping the amount of work per processor
the same

• Strong scaling is generally more useful and more difficult
to achieve than weak scaling

Strong scaling

0

50

100

150

200

250

300

0 50 100 150 200 250 300

Sp
ee

d-
up

No of processors

Speed-up vs No of processors

linear
actual

Weak scaling

0
2
4
6
8

10
12
14
16
18
20

1 n

Actual
Ideal

Ru
nt

im
e

(s
)

No. of processors

The serial section of code
“The performance improvement to be gained by parallelisation is limited
by the proportion of the code which is serial”

Gene Amdahl, 1967

•  A typical program has two categories of components
•  Inherently sequential sections: can’t be run in parallel
•  Potentially parallel sections

•  A fraction, α, is completely serial
•  Assuming parallel part is 100% efficient:

•  Parallel runtime

•  Parallel speedup

•  We are fundamentally limited by the serial fraction
•  For α = 0, S = P as expected (i.e. efficiency = 100%)
•  Otherwise, speedup limited by 1/ α for any P

•  For α = 0.1; 1/0.1 = 10 therefore 10 times maximum speed up
•  For α = 0.1; S(N, 16) = 6.4, S(N, 1024) = 9.9

Amdahl’s law
Sharpen & CFD

T (N,P) =αT (N,1)+ (1−α)T (N,1)
P

S(N,P) = T (N,1)
T (N,P)

=
P

αP + (1−α)

• We need larger problems for larger numbers of CPUs

• Whilst we are still limited by the serial fraction, it becomes
less important

Gustafson’s Law

Utilising Large Parallel Machines
• Assume parallel part is proportional to N

•  serial part is independent of N
•  time

•  speedup

•  Scale problem size with CPUs, i.e. set N = P (weak scaling)
•  speedup S(P,P) = α + (1-α) P
•  efficiency E(P,P) = α/P + (1-α)

T (N,P) = Tserial (N,P)+Tparallel (N,P)

 =αT (1,1)+ (1−α) N T (1,1)
P

S(N,P) = T (N,1)
T (N,P)

=
α + (1−α)N
α + (1−α) N

P

T (N,1) =αT (1,1)+ (1−α) N T(1,1)

•  If you increase the amount of work done by each parallel
task then the serial component will not dominate
•  Increase the problem size to maintain scaling
•  Can do this by adding extra complexity or increasing the overall

problem size

Gustafson’s Law
CFD

Due to the scaling
of N, the serial
fraction effectively
becomes α/P

Number of
processors

Strong scaling
(Amdahl’s law)

Weak scaling
(Gustafson’s law)

16 6.4 14.5

1024 9.9 921.7

Analogy: Flying London to New York

Buckingham Palace to Empire State
• By Jumbo Jet

•  distance: 5600 km; speed: 700 kph
•  time: 8 hours ?

• No!
•  1 hour by tube to Heathrow + 1 hour for check in etc.
•  1 hour immigration + 1 hour taxi downtown
•  fixed overhead of 4 hours; total journey time: 4 + 8 = 12 hours

•  Triple the flight speed with Concorde to 2100 kph
•  total journey time = 4 hours + 2 hours 40 mins = 6.7 hours
•  speedup of 1.8 not 3.0

• Amdahl’s law! α = 4/12 = 0.33; max speedup = 3 (i.e. 4 hours)

Flying London to Sydney

Buckingham Palace to Sydney Opera
•  By Jumbo Jet

•  distance: 16800 km; speed: 700 kph; flight time; 24 hours
•  serial overhead stays the same: total time: 4 + 24 = 28 hours

•  Triple the flight speed
•  total time = 4 hours + 8 hours = 12 hours
•  speedup = 2.3 (as opposed to 1.8 for New York)

•  Gustafson’s law!
•  bigger problems scale better
•  increase both distance (i.e. N) and max speed (i.e. P) by three
•  maintain same balance: 4 “serial” + 8 “parallel”

Load Imbalance
•  These laws all assumed all processors are equally busy

•  what happens if some run out of work?
• Specific case

•  four people pack boxes with cans of soup: 1 minute per box

•  takes 6 minutes as everyone is waiting for Anna to finish!
•  if we gave everyone same number of boxes, would take 3 minutes

• Scalability isn’t everything
•  make the best use of the processors at hand before increasing the

number of processors

Person Anna Paul David Helen Total
boxes 6 1 3 2 12

Quantifying Load Imbalance
• Define Load Imbalance Factor

LIF = maximum load / average load

•  for perfectly balanced problems LIF = 1.0, as expected
•  in general, LIF > 1.0
•  LIF tells you how much faster your calculation could be with

balanced load

• Box packing
•  LIF = 6/3 = 2
•  initial time = 6 minutes
•  best time = LIF / 2 = 3 minutes

Summary
•  There are many considerations when parallelising code

•  A variety of patterns exist that can provide well known approaches to

parallelising a serial problem
•  You will see examples of some of these during the practical sessions

•  Scaling is important, as the more a code scales the larger a machine it
can take advantage of
•  can consider weak and strong scaling
•  in practice, overheads limit the scalability of real parallel programs
•  Amdahl’s law models these in terms of serial and parallel fractions
•  larger problems generally scale better: Gustafson’s law

•  Load balance is also a crucial factor

•  Metrics exist to give you an indication of how well your code performs
and scales

