NATURAL
ENVIRONMENT E P S R‘
RESEARCH COUNCIL

ARCHER Single Node
Optimisation

Profiling

Slides contributed by Cray and EPCC

<¢\g«ws,%
2 7 | &
(©)archer epcc| @
< 4‘" (<)
(COINB‘)<z~

I
What is profiling?

Analysing your code to find out the proportion of execution
time spent in different routines.

Essential to know this if we are going to target
optimisation.

No point optimising routines that don’t significantly
contribute to the overall execution time.

can just make your code less readable/maintainable

epce

-
Code profiling

Code profiling is the first step for anyone interested in
performance optimisation
Profiling works by instrumenting code at compile time
Thus it's (usually) controlled by compiler flags
Can reduce performance
Standard profiles return data on:

Number of function calls
Amount of time spent in sections of code

Also tools that will return hardware specific data

Cache misses, TLB misses, cache re-use, flop rate, etc...
Useful for in-depth performance optimisation

epcc

Analysis and Profiling

Sampling and tracing

Many profilers work by sampling the program counter at
regular intervals (normally 100 times per second).

low overhead, little effect on execution time

Builds a statistical picture of which routines the code is
spending time in.
if the run time is too small (< ~10 seconds) there aren’t enough
samples for good statistics
Tracing can get more detailed information by recording
some data (e.g. time stamp) at entry/exit to functions
higher overhead, more effect on runtime
unrestrained use can result in huge output files

epcc

Standard Unix profilers

Standard Unix profilers are prof and gprof
Many other profiling tools use same formats
Usual compiler flags are -p and -pg:

ftn -p mycode.F90 -o myprog for prof
cc -pg mycode.c -0 myprog for gprof

When code is run it produces instrumentation log

mon . out for prof
gmon . out for gprof

Then run prof/gprof on your executable program
eg. gprof myprog (not gprof gmon.out)

epce

Analysis and Profiling

Standard profilers

prof myprog reads mon.out and produces this:

%$Time Seconds Cumsecs #Calls msec/call Name

32.4 0.71 0.71 14 50.7 relax
28.3 0.62 1.33 14 44 .3 resid

11.4 0.25 1.58 3 83. __f90 _close
5.9 0.13 1.71 1629419 0.0001 mcount

5.0 0.11 1.82 339044 0.0003 _ f90 slr i4
5.0 0.11 1.93 167045 0.0007

__inrange single

2.7 0.06 1.99 507 0.12 _read

2.7 0.06 2.05 1 60. MAIN

epce

Analysis and Profiling

-
Standard profilers

gprof myprog reads gmon.out and produces something
very similar

gprof also produces a program calltree sorted by inclusive
times

Both profilers list all routines, including obscure system ones

Of note: mcount(), mcount(), moncontrol(), moncontrol()
monitor() and monitor() are all overheads of the profiling
implementation itself

_mcount() is called every time your code calls a function; if it's high in
the profile, it can indicate high function-call overhead

gprof assumes calls to a routine from different parents take the same
amount of time — may not be true

epce

Analysis and Profiling

-
The Golden Rules of profiling

- Profile your code
- The compiler/runtime will NOT do all the optimisation for you.

Profile your code yourself
- Don't believe what anyone tells you. They're wrong.

Profile on the hardware you want to run on
- Don't profile on your laptop if you plan to run on ARCHER.

Profile your code running the full-sized problem
- The profile will almost certainly be qualitatively different for a test case.

Keep profiling your code as you optimise
- Concentrate your efforts on the thing that slows your code down.
- This will change as you optimise.
- So keep on profiling.

epcc

I
CrayPAT

Can do both statistic sampling and function/loop level
tracing.

Recommended usage:
Build and instrument code
Run code and get statistic profile
Re-instrument based on profile
Re-run code to get more detailed tracing

epce

-
Example with CrayPAT (1/2)

- Load performance tools software
module load perftools

- Re-build application (keep .o files)
make clean
make

- Instrument application for automatic profiling analysis

You should get an instrumented program a.out+pat
pat build -0 apa a.out

- Run the instrumented application (...+pat) to get top time
consuming routines

You should get a performance file (“<sdatafile>.xf") or
multiple files in a directory <sdatadir>

epcc

-
Example with CrayPAT (2/2)

Generate text report and an .apa instrumentation file
pat_report [<sdatafile>.xf | <sdatadir>]

Inspect the .apa file and sampling report whether additional
Instrumentation is needed
See especially sites “Libraries to trace” and “HWPC group to collect”

- Instrument application for further analysis (a.out+apa)
pat_build -0 <apafile>.apa
- Run application (...+apa)

- Generate text report and visualization file (.ap2)
pat_report -o my_text report.txt <data>

- View report in text and/or with Cray Apprentice?
app2 <datafile>.ap2

epcc

0
Finding single-core hotspots

- Remember: pay attention only to user routines that consume
significant portion of the total time

- View the key hardware counters, for example

- L1 and L2 cache metrics
- use of vector (SSE/AVX) instructions

epcc

- CrayPAT has mechanisms for finding “the” hotspot in a
routine (e.g. in case the routine contains several and/or
long loops)

CrayPAT API
Possibility to give labels to “PAT regions”

Loop statistics (works only with Cray compiler)
Compile & link with CCE using -h profile_generate
pat_report will generate loop statistics if the flag is enabled

epcc

USER / remap_

Time%

Time

Imb. Time

Imb. Time%

Calls
CPU_CLK_UNHALTED:THREAD_P
CPU_CLK_UNHALTED:REF_P

L1D:REPLACEMENT
L2_RQSTS:ALL_DEMAND_DATA_RD
L2_RQSTS :DEMAND_DATA_RD_HIT

FP_COMP_OPS_EXE : X87

SIMD_FP_256:PACKED SINGLE
User time (approx)
CPU_CLK

HW FP Ops / User time
Total SP ops

Total DP ops

MFLOPS (aggregate)

D2 cache hit,miss ratio
D2 to D1 bandwidth
Average Time per Call
CrayPat Overhead : Time

0.026M/sec

DTLB_LOAD_MISSES:MISS CAUSES A WALK
DTLB_STORE_MISSES:MISS_CAUSES_A_WALK

FP_COMP_OPS_EXE : SSE_SCALAR_DOUBLE
FP_COMP_OPS_EXE : SSE_FP_SCALAR_SINGLE

FP_COMP_OPS_EXE : SSE_PACKED_SINGLE

17.476 secs
2.90GHz
2,556.183M/sec
2,448.698M/sec
107 .485M/sec
61,348.39M/sec
94.4% hits
6,680.690MiB/sec

11.4%

25.2%
15.801180
2.582609

14.7%
460,800.0
77,964,376,624
2,689,572,161
20,626,569
17,745,058
2,753,483,367
1,912,839,218
1,757,495,428
1,597
1,556,036,610
1,878,388,524
302,976,589
5,003,127,724
47,202,147,918

44,671,354,883
42,792,964,761
1,878,390,122

5.6%
122,421,709,963
0.000034

lata

coce Flat profile (
calls
\
. HW counter
values
.
cycles .0% Time
ops 11.8%peak(DP)
ops .
ops Derl\(ed
, metrics
misses
bytes
secs

’ archenr

epCce

-
Hardware performance counters

CrayPAT can interface with Cray XC30's HWPCs
Gives extra information on how hardware is behaving
Very useful for understanding (& optimising) application performance

Provides information on
hardware features, e.g. caches, vectorisation and memory bandwidth

Available on per-program and per-function basis
Per-function information only available through tracing

Number of simultaneous counters limited by hardware
4 counters available with Intel lvybridge processors
If you need more, you'll need multiple runs

Most counters accessed through the PAPI interface
Either native counters or derived metrics constructed from these

epce

Hardware counters selection
HWPCs collected using CrayPAT

Compile and instrument code for profiling as before

Set PAT_RT _PERFCTR environment variable at runtime
e.g. in the job script
Hardware counter events are not collected by default (except with APA)
export PAT_RT_PERFCTR=...
either a list of named PAPI counters

or <set number> = a pre-defined (and useful) set of counters

recommended way to use HWPCs
there are 15 groups to choose from

To see them: -
pat_help -> counters -> ivybridge -> groups -REChruca[tern1for
man hwpc / Ivybrldge

more ${CRAYPAT_ ROOT}/share/CounterGroups.intel famémod62

epcc

e
Predefined Ivybridge HW Counter Groups

Default is number 1 with CrayPAT APA procedure

0: D1 with instruction counts 11: Floating point operations dispatched
1: Summary -- FP and cache 12: AV X floating point operations
metrics 13: SSE and AVX floating point

2: D1, D2, L3 Metrics operations SP

6: Micro-op queue stalls 14. SSE and AVX floating point

7: Back end stalls operations DP

8: Instructions and branches 19: Prefetchs

9 Instruction cache 23: FP and cache metrics (same as 1)

10: Cache Hierarchy

epcc

e
Example: Group 2

USER / sweepy _
Time% 14.6%
Time 8.738150 secs
Imb. Time 3.077320 secs
Imb. Time% 27 .2%
Calls 11.547 /sec 100.0 calls
CPU_CLK_UNHALTED:THREAD_P 92,754,888,918
CPU_CLK_UNHALTED:REF_P 2,759,876,135
L1D:REPLACEMENT 1,813,741,166
L2_RQSTS:ALL_DEMAND_DATA_RD 1,891,459,700
L2_RQSTS:DEMAND DATA RD HIT 1,644,133,800
LLC_MISSES 98,952,928
LLC_REFERENCES 690,626,471
User time (approx) 8.660 secs 23,390,899,520 cycles 100.0% Time
CPU_CLK 3.36GHz
D2 cache hit,miss ratio 86.4% hits 13.6% misses
L3 cache hit,miss ratio 85.7% hits 14.3% misses
D2 to D1 bandwidth 13,330.757MiB/sec 121,053,420,792 bytes
Average Time per Call 0.087381 secs
CrayPat Overhead : Time ©0.0% ...

T A ———— T | |

- 00000
Interpreting the performance numbers

Performance numbers are an average over all ranks
explains non-integer values

This does not always make sense

e.g. if ranks are not all doing the same thing:
Master-slave schemes
MPMD apruns combining multiple, different programs

Want them to only process data for certain ranks
pat report -sfilter input='condition'
condition should be an expression involving pe, e.g.

pe<1024 for the first 1024 ranks only
pe%2==0 for every second rank

epcc

OpenMP data collection and reporting

Give finer-grained profiling of threaded routines
Measure overhead incurred entering and leaving

Parallel regions
#pragma omp parallel

Work-sharing constructs within parallel regions
#pragma omp for

Timings and other data now shown per-thread
rather than per-rank

OpenMP tracing enabled with pat_build -gomp
CCE: insert tracing points around parallel regions automatically
Intel, Gnu: need to use CrayPAT APl manually

epce

OpenMP data collection and reporting
Load imbalance for hybrid MPI/OpenMP programs

now calculated across all threads in all ranks

imbalances for MPIl and OpenMP combined
Can choose to see imbalance in each programming model separately
See next slide for details

Data displayed by default in pat_report
no additional options needed
Report focuses on where program is spending its time

Assumes all requested resources should be used
you may have reasons not to want to do this, of course

epce

e
Memory usage

Knowing how much memory each rank uses is important:

What is the minimum number of cores | can run this problem on?
given there is 32GB (~30GB usable) of memory per node (32 cores)
Does memory usage scale well in the application?

Is memory usage balanced across the ranks in the application?
Is my application spending too much time allocating and freeing?

epce

Memory per rank

H ea p Statl Stl CS / ~30GB usable memory per node

Too many allocs/frees?
Would show up as ETC
time in CrayPAT report

Notes for table 5:

Table option:
-0 heap_hiwater
Options implied by jfable option”-
-d am@,ub,ta,uatf,nf,ac,ab/-b pe=[mmm]

This table shows only lines’ with Tracked Heap HilWater MBytes > 0.

Table 5: Heap/Stats during Main Program

Tracked otal Tracked | Tracked |PE[mmm] Memory leaks _

Heap 1locs Objects MBytes Not Usua”y a pl’oblem in HPC
HilWater Not Not
MBytes Freed Freed

9.794 | 915 | 910 | 4 | 1.011 |Total

9.943 1170 1103 68 1.046 |pe.©

9.909 715 712 3 1.010 |pe.22

9.446 1278 1275 3 1.010 |pe.43

e
Summary

Profiling is essential to identify performance bottlenecks
even at single core level

CrayPAT has some very useful extra features
can pinpoint and characterise the hotspot loops (not just routines)
hardware performance counters give extra insight into performance

well-integrated view of hybrid programming models

most commonly MPI/OpenMP
also CAF, UPC, SHMEM, pthreads, OpenACC, CUDA

information on memory usage

And remember the Golden Rules
including the one about not believing what anyone tells you

epcc

