
GPU
Programming

Alan Gray

EPCC

The University of Edinburgh

Overview

•  Motivation and need for CUDA

•  Introduction to CUDA
–  CUDA kernels, decompositions
–  CUDA memory management
–  C and Fortran

•  OpenCL

2

NVIDIA CUDA

•  Traditional languages alone are not sufficient for
programming GPUs

•  CUDA allows NVIDIA GPUs to be programmed in
C/C++ or Fortran
–  defines language extensions for defining kernels
–  kernels execute in multiple threads concurrently on the

GPU
–  provides API functions for e.g. device memory

management

3

CPU GPUBus

Main program
code

Key kernel
code

4

GPGPU: Stream Computing

•  Data set decomposed into a stream of elements
•  A single computational function (kernel) operates on each element

–  “thread” defined as execution of kernel on one data element

•  Multiple cores can process multiple elements in parallel
–  i.e. many threads running in parallel

•  Suitable for data-parallel problems

5

SMGPU

Shared memory

SM SM

SM SM

6

•  NVIDIA GPUs have a 2-level hierarchy:
–  Multiple Streaming Multiprocessors (SMs), each with multiple cores

•  The number of SMs, and cores per SM, varies across
generations

•  In CUDA, this is abstracted as Grid of Thread
Blocks
–  The multiple blocks in a grid map onto the multiple SMs

–  Each block in a grid contains multiple threads, mapping onto the
cores in an SM

•  We don’t need to know the exact details of the
hardware (number of SMs, cores per SM).
–  Instead, oversubscribe, and system will perform

scheduling automatically
– Use more blocks than SMs, and more threads than cores

–  Same code will be portable and efficient across different
GPU versions.

7

CUDA dim3 type

•  CUDA introduces a new dim3 type
–  Simply contains a collection of 3 integers, corresponding

to each of X,Y and Z directions.
C:
dim3 my_xyz_values(xvalue,yvalue,zvalue);

Fortran:
type(dim3) :: my_xyz_values
my_xyz_values = dim3(xvalue,yvalue,zvalue)

8

•  X component can be accessed as follows:

C: my_xyz_values.x

Fortran: my_xyz_values%x

And similar for Y and Z

•  E.g. for
my_xyz_values = dim3(6,4,12)

then my_xyz_values%z has value 12

9

10

Analogy

•  You check in to the hotel, as do your classmates
–  Rooms allocated in order

•  Receptionist realises hotel is less than half full
–  Decides you should all move from your room number i to

room number 2i
–  so that no-one has a neighbour to disturb them

11

•  Serial Solution:
–  Receptionist works out each new number in turn

12

•  Parallel Solution:

13

“Everybody: check your room number. Multiply it by 2, and
move to that room.”

•  Serial solution:

14

for (i=0;i<N;i++){
 result[i] = 2*i;
}

•  We can parallelise by assigning each iteration to a separate
CUDA thread.

CUDA C Example

15

•  Replace loop with function
•  Add __global__ specifier

•  To specify this function is to form a GPU kernel

•  Use internal CUDA variables to specify array indices
•  threadidx.x is an internal variable unique to each thread in a

block.

•  X component of dim3 type. Since our problem is 1D, we are not
using the Y or Z components (more later)

__global__ void myKernel(int *result)
{
 int i = threadIdx.x;
 result[i] = 2*i;
}

CUDA C Example

16

•  And launch this kernel by calling the function

•  on multiple CUDA threads using <<<…>>> syntax

dim3 blocksPerGrid(1,1,1); //use only one block
dim3 threadsPerBlock(N,1,1); //use N threads in the block

myKernel<<<blocksPerGrid, threadsPerBlock>>>(result);

CUDA FORTRAN Equivalent
Kernel:

attributes(global) subroutine myKernel(result)

 integer, dimension(*) :: result

 integer :: i

 i = threadidx%x

 result(i) = 2*i

end subroutine

Launched as follows:

blocksPerGrid = dim3(1, 1, 1)

threadsPerBlock = dim3(N, 1, 1)

call myKernel <<<blocksPerGrid, threadsPerBlock>>> (result)

17

CUDA C Example

•  The previous example only uses 1 block, i.e. only 1 SM on
the GPU, so performance will be very poor. In practice, we
need to use multiple blocks to utilise all SMs, e.g.:

18

__global__ void myKernel(int *result)
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 result[i] = 2*i;
}

...
dim3 blocksPerGrid(N/256,1,1); //assuming 256 divides N exactly
dim3 threadsPerBlock(256,1,1);

myKernel<<<blocksPerGrid, threadsPerBlock>>>(result);
...

FORTRAN
attributes(global) subroutine myKernel(result)

 integer, dimension(*) :: result

 integer :: i

 i = (blockidx%x-1)*blockdim%x + threadidx%x

 result(i) = 2*i

end subroutine

...

blocksPerGrid = dim3(N/256, 1, 1) !assuming 256 divides N exactly

threadsPerBlock = dim3(256, 1, 1)

call myKernel <<<blocksPerGrid, threadsPerBlock>>> (result)

...

19

•  We have chosen to use 256 threads per block, which is
typically a good number (see practical).

CUDA C Example

•  More realistic 1D example: vector addition

20

__global__ void vectorAdd(float *a, float *b, float *c)
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 c[i] = a[i] + b[i];
}

...
dim3 blocksPerGrid(N/256,1,1); //assuming 256 divides N exactly
dim3 threadsPerBlock(256,1,1);

vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(a, b, c);
...

CUDA FORTRAN Equivalent
attributes(global) subroutine vectorAdd(a, b, c)

 real, dimension(*) :: a, b, c

 integer :: i

 i = (blockidx%x-1)*blockdim%x + threadidx%x

 c(i) = a(i) + b(i)

end subroutine

...

blocksPerGrid = dim3(N/256, 1, 1)

threadsPerBlock = dim3(256, 1, 1)

call vectorAdd <<<blocksPerGrid, threadsPerBlock>>> (a, b, c)

...

21

CUDA C Internal Variables

For a 1D decomposition (e.g. the previous examples)

• blockDim.x: Number of threads per block
–  Takes value 256 in previous example

• threadIdx.x:unique to each thread in a block
–  Ranges from 0 to 255 in previous example

• blockIdx.x: Unique to every block in the grid
–  Ranges from 0 to (N/256 - 1) in previous example

22

CUDA Fortran Internal Variables

For a 1D decomposition (e.g. the previous example)

• blockDim%x: Number of threads per block
–  Takes value 256 in previous example

• threadIdx%x:unique to each thread in a block
–  Ranges from 1 to 256 in previous example

• blockIdx%x: Unique to every block in the grid
–  Ranges from 1 to (N/256) in previous example

23

2D Example

24

•  2D or 3D CUDA decompositions also possible, e.g. for
matrix addition (2D):

__global__ void matrixAdd(float a[N][N], float b[N][N], float c[N][N])
{

 int j = blockIdx.x * blockDim.x + threadIdx.x;

 int i = blockIdx.y * blockDim.y + threadIdx.y;

 c[i][j] = a[i][j] + b[i][j];

}

int main()

{

 dim3 blocksPerGrid(N/16,N/16,1); // (N/16)x(N/16) blocks/grid (2D)

 dim3 threadsPerBlock(16,16,1); // 16x16=256 threads/block (2D)

 matrixAdd<<<blocksPerGrid, threadsPerBlock>>>(a, b, c);

}

CUDA Fortran Equivalent
! Kernel declaration

attributes(global) subroutine matrixAdd(N, a, b, c)

 integer, value :: N

 real, dimension(N,N) :: a, b, c

 integer :: i, j

 i = (blockidx%x-1)*blockdim%x + threadidx%x

 j = (blockidx%y-1)*blockdim%y + threadidx%y

 c(i,j) = a(i,j) + b(i,j)

end subroutine

! Kernel invocation

blocksPerGrid = dim3(N/16, N/16, 1) ! (N/16)x(N/16) blocks/grid (2D)

threadsPerBlock = dim3(16, 16, 1) ! 16x16=256 threads/block (2D)

call matrixAdd <<<blocksPerGrid, threadsPerBlock>>> (N, a, b, c)

25

Memory Management - allocation

•  The GPU has a separate memory space from the host
CPU

•  Data accessed in kernels must be on GPU memory
•  Need to manage GPU memory and copy data to and

from it explicitly
•  cudaMalloc is used to allocate GPU memory
•  cudaFree releases it again
 float *a;

 cudaMalloc(&a, N*sizeof(float));

 …

 cudaFree(a);

26

Memory Management - cudaMemcpy
•  Once we've allocated GPU memory, we need to be able to copy data to

and from it

•  cudaMemcpy does this:

cudaMemcpy(array_device, array_host, N*sizeof(float),

 cudaMemcpyHostToDevice);

cudaMemcpy(array_host, array_device, N*sizeof(float),

 cudaMemcpyDeviceToHost);

•  The first argument always corresponds to the destination of the transfer.

•  Transfers between host and device memory are relatively slow and can
become a bottleneck, so should be minimised when possible

27

CUDA FORTRAN – Data management
•  Data management is more intuitive than CUDA C

•  Because Fortran has array syntax, and also compiler knows if
a pointer is meant for CPU or GPU memory

•  Can use allocate() and deallocate() as for host memory
 real, device, allocatable, dimension(:) :: d_a

 allocate(d_a(N))
 …

 deallocate (d_a)

•  Can copy data between host and device using
assignment

 d_a = a(1:N)

•  Or can instead use CUDA API (similar to C), e.g.
 istat = cudaMemcpy(d_a, a, N)

28

Synchronisation between host and device

•  Kernel calls are non-blocking. This means that the
host program continues immediately after it calls
the kernel
–  Allows overlap of computation on CPU and GPU

•  Use cudaThreadSynchronize() to wait for
kernel to finish

29

•  Standard cudaMemcpy calls are blocking
–  Non-blocking variants exist

vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(a, b, c);
//do work on host (that doesn’t depend on c)
cudaThreadSynchronise(); //wait for kernel to finish

Synchronisation between CUDA threads

•  Within a kernel, to syncronise between threads in the
same block use the syncthreads()call

•  Therefore, threads in the same block can communicate
through memory spaces that they share, e.g. assuming
x local to each thread and array in a shared memory
space

30

•  It is not possible to communicate between different blocks in
a kernel: must instead exit kernel and start a new one

if (threadIdx.x == 0) array[0]=x;
syncthreads();
if (threadIdx.x == 1) x=array[0];

Unified Memory

•  The GPU has a separate memory space from the host
CPU

•  Recent advances in CUDA and in hardware allow this
aspect to be largely hidden from the programmer with
automatic data movement.
–  “Unified Memory”

•  HOWEVER for performance it is often necessary to
manually manage these distinct spaces.
–  And this lecture has shown how to do this

•  But unified memory can be useful to help get codes
running quickly
–  Possibly an incremental stepping stone to manual data

management

31

Unified Memory
•  With our previous examples, for each array we maintained both a host

and device copy.
–  The device copy was allocated using cudaMalloc
–  And we used cudaMemcpy to transfer

•  With Unified Memory, a single copy can be accessed on either the CPU
or GPU if allocated using the cudaMallocManaged call (and freed
using cudaFree), e.g.

 float *array;

 cudaMallocManaged(&array, N*sizeof(float));

 // array can now be accessed either on host or device

 ... setup, launch kernel, process output ...

 cudaFree(array);

•  The data will be automatically transferred to/from the GPU as necessary.

32

Multi-GPU with MPI

•  In this lecture, you have seen how to adapt a C or
Fortran code to utilise a GPU using CUDA

•  We can combine with MPI, to utilise multiple GPUs
(possibly distributed across multiple nodes)

•  Simply set the number of MPI tasks equal to the
number of nodes
–  And each MPI task controls its own GPU

•  MPI communications: can either
–  Explicitly copy from/to GPU with CUDA before/after any MPI

communications which access host data
–  Use CUDA-aware MPI (if available) such that MPI directly

accesses GPU memory

33

Compiling CUDA Code

•  CUDA C code is compiled using nvcc:

 nvcc –o example example.cu

•  CUDA Fortran is compiled using PGI compiler
–  either use .cuf filename extension for CUDA files
–  and/or pass –Mcuda to the compiler command line

 pgf90 -Mcuda –o example example.cuf

34

OpenCL

•  Open Compute Language (OpenCL): “The Open
Standard for Heterogeneous Parallel Programming”
–  Open cross-platform framework for programming modern

multicore and heterogeneous systems

•  Supports wide range of applications and
architectures, including GPUs
–  Supported on NVIDIA Tesla + AMD FireStream

•  See http://www.khronos.org/opencl/

35

OpenCL vs CUDA on NVIDIA

•  NVIDIA support both CUDA and OpenCL as APIs to the
hardware.
–  But put much more effort into CUDA
–  CUDA more mature, well documented and performs better

•  OpenCL and C for CUDA conceptually very similar
–  Very similar abstractions, basic functionality etc
–  Different names e.g. “Thread” CUDA -> “Work Item” (OpenCL)
–  Porting between the two should in principle be straightforward

•  OpenCL is a lower level API than C for CUDA
–  More work for programmer

•  OpenCL obviously portable to other systems
–  But in reality work will still need to be done for efficiency on

different architecture

•  OpenCL may well catch up with CUDA given time
36

Summary

•  Traditional languages alone are not sufficient for
programming GPUs

•  CUDA allows NVIDIA GPUs to be programmed using
C/C++ or Fortran
–  defines language extensions and APIs to enable this

•  We introduced the key CUDA concepts and gave
examples

•  OpenCL provides another means of programming
GPUs in C
–  conceptually similar to CUDA, but less mature and lower-level
–  supports other hardware as well as NVIDIA GPUs

37

