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Overview 

•  Motivation and need for CUDA 

•  Introduction to CUDA  
–  CUDA kernels, decompositions 
–  CUDA memory management 
–  C and Fortran 

•  OpenCL 
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NVIDIA CUDA 

•  Traditional languages alone are not sufficient for 
programming GPUs 

•  CUDA allows NVIDIA GPUs to be programmed in 
C/C++ or Fortran 
–  defines language extensions for defining kernels 
–  kernels execute in multiple threads concurrently on the 

GPU 
–  provides API functions for e.g. device memory 

management 
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GPGPU: Stream Computing 

•  Data set decomposed into a stream of elements 
•  A single computational function (kernel) operates on each element 

–  “thread” defined as execution of kernel on one data element 

•  Multiple cores can process multiple elements in parallel 
–  i.e. many threads running in parallel 

•  Suitable for data-parallel problems 
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SMGPU

Shared memory

SM SM

SM SM
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•  NVIDIA GPUs have a 2-level hierarchy: 
–  Multiple Streaming Multiprocessors (SMs), each with multiple cores 

•  The number of SMs, and cores per SM, varies across 
generations  



•  In CUDA, this is abstracted as Grid of Thread 
Blocks 
–  The multiple blocks in a grid map onto the multiple SMs 

–  Each block in a grid contains multiple threads, mapping onto the 
cores in an SM  

•  We don’t need to know the exact details of the 
hardware (number of SMs, cores per SM). 
–  Instead, oversubscribe, and system will perform 

scheduling automatically 
– Use more blocks than SMs, and more threads than cores 

–  Same code will be portable and efficient across different 
GPU versions. 
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CUDA dim3 type 

•  CUDA introduces a new dim3 type 
–  Simply contains a collection of 3 integers, corresponding 

to each of X,Y and Z directions. 
C: 
dim3 my_xyz_values(xvalue,yvalue,zvalue); 

 
Fortran: 
type(dim3) :: my_xyz_values 
my_xyz_values = dim3(xvalue,yvalue,zvalue) 
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•  X component can be accessed as follows: 

C: my_xyz_values.x 

Fortran: my_xyz_values%x 

And similar for Y and Z 

•  E.g. for 
my_xyz_values = dim3(6,4,12) 

then my_xyz_values%z has value 12 
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Analogy 

•  You check in to the hotel, as do your classmates 
–  Rooms allocated in order 

•  Receptionist realises hotel is less than half full 
–  Decides you should all move from your room number i to 

room number 2i 
–  so that no-one has a neighbour to disturb them 
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•  Serial Solution: 
–  Receptionist works out each new number in turn 
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•  Parallel Solution: 
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“Everybody: check your room number. Multiply it by 2, and 
move to that room.” 



•  Serial solution: 
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for (i=0;i<N;i++){ 
  result[i] = 2*i; 
} 
 

•  We can parallelise by assigning each iteration to a separate 
CUDA thread. 



CUDA C Example 
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•  Replace loop with function 
•  Add __global__ specifier 

•  To specify this function is to form a GPU kernel 

•  Use internal CUDA variables to specify array indices  
•  threadidx.x is an internal variable unique to each thread in a 

block. 

•  X component of dim3 type. Since our problem is 1D, we are not 
using the Y or Z components (more later) 

 

__global__ void myKernel(int *result) 
{ 
  int i = threadIdx.x; 
  result[i] = 2*i; 
} 



CUDA C Example 
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•  And launch this kernel by calling the function 

•  on multiple CUDA threads using <<<…>>> syntax 

dim3 blocksPerGrid(1,1,1); //use only one block 
dim3 threadsPerBlock(N,1,1); //use N threads in the block 
 
myKernel<<<blocksPerGrid, threadsPerBlock>>>(result); 
 

 



CUDA FORTRAN Equivalent 
Kernel: 

attributes(global) subroutine myKernel(result) 

    integer, dimension(*) :: result 

    integer :: i 

    i = threadidx%x 

    result(i) = 2*i 

end subroutine 

 

Launched as follows: 

blocksPerGrid = dim3(1, 1, 1) 

threadsPerBlock = dim3(N, 1, 1) 

call myKernel <<<blocksPerGrid, threadsPerBlock>>> (result) 
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CUDA C Example 

•  The previous example only uses 1 block, i.e. only 1 SM on 
the GPU, so performance will be very poor. In practice, we 
need to use multiple blocks to utilise all SMs, e.g.: 
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__global__ void myKernel(int *result) 
{ 
  int i = blockIdx.x * blockDim.x + threadIdx.x; 
  result[i] = 2*i; 
} 

 

... 
dim3 blocksPerGrid(N/256,1,1); //assuming 256 divides N exactly 
dim3 threadsPerBlock(256,1,1);  
 
myKernel<<<blocksPerGrid, threadsPerBlock>>>(result); 
... 

 



FORTRAN 
attributes(global) subroutine myKernel(result) 

    integer, dimension(*) :: result 

    integer :: i 

    i = (blockidx%x-1)*blockdim%x + threadidx%x 

    result(i) = 2*i 

end subroutine 

... 

blocksPerGrid = dim3(N/256, 1, 1) !assuming 256 divides N exactly 

threadsPerBlock = dim3(256, 1, 1) 

call myKernel <<<blocksPerGrid, threadsPerBlock>>> (result) 

... 
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•  We have chosen to use 256 threads per block, which is 
typically a good number (see practical). 



CUDA C Example 

•  More realistic 1D example: vector addition 
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__global__ void vectorAdd(float *a, float *b, float *c) 
{ 
  int i = blockIdx.x * blockDim.x + threadIdx.x; 
  c[i] = a[i] + b[i]; 
} 

 
... 
dim3 blocksPerGrid(N/256,1,1); //assuming 256 divides N exactly 
dim3 threadsPerBlock(256,1,1);  
 
vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(a, b, c); 
... 

 



CUDA FORTRAN Equivalent 
attributes(global) subroutine vectorAdd(a, b, c) 

    real, dimension(*) :: a, b, c 

    integer :: i 

    i = (blockidx%x-1)*blockdim%x + threadidx%x 

    c(i) = a(i) + b(i) 

end subroutine 

... 

blocksPerGrid = dim3(N/256, 1, 1) 

threadsPerBlock = dim3(256, 1, 1) 

call vectorAdd <<<blocksPerGrid, threadsPerBlock>>> (a, b, c) 

... 
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CUDA C Internal Variables 

For a 1D decomposition (e.g. the previous examples) 

• blockDim.x: Number of threads per block 
–  Takes value 256 in previous example 

• threadIdx.x:unique to each thread in a block 
–  Ranges from 0 to 255 in previous example 

• blockIdx.x: Unique to every block in the grid 
–  Ranges from 0 to (N/256 - 1) in previous example 
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CUDA Fortran Internal Variables 

For a 1D decomposition (e.g. the previous example) 

• blockDim%x: Number of threads per block 
–  Takes value 256 in previous example 

• threadIdx%x:unique to each thread in a block 
–  Ranges from 1 to 256 in previous example 

• blockIdx%x: Unique to every block in the grid 
–  Ranges from 1 to (N/256) in previous example 
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2D Example 
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•  2D or 3D CUDA decompositions also possible, e.g. for 
matrix addition (2D):   

__global__ void matrixAdd(float a[N][N], float b[N][N], float c[N][N]) 
{ 

  int j = blockIdx.x * blockDim.x + threadIdx.x; 

  int i = blockIdx.y * blockDim.y + threadIdx.y; 

  c[i][j] = a[i][j] + b[i][j]; 

} 

int main() 

{ 

  dim3 blocksPerGrid(N/16,N/16,1); // (N/16)x(N/16) blocks/grid (2D)   

  dim3 threadsPerBlock(16,16,1); // 16x16=256 threads/block (2D)   

  matrixAdd<<<blocksPerGrid, threadsPerBlock>>>(a, b, c); 

} 

 



CUDA Fortran Equivalent 
! Kernel declaration 

attributes(global) subroutine matrixAdd(N, a, b, c) 

    integer, value :: N 

    real, dimension(N,N) :: a, b, c 

    integer :: i, j 

    i = (blockidx%x-1)*blockdim%x + threadidx%x 

    j = (blockidx%y-1)*blockdim%y + threadidx%y 

    c(i,j) = a(i,j) + b(i,j) 

end subroutine 

 

! Kernel invocation 

blocksPerGrid = dim3(N/16, N/16, 1) ! (N/16)x(N/16) blocks/grid (2D)  

threadsPerBlock = dim3(16, 16, 1) ! 16x16=256 threads/block (2D)  

call matrixAdd <<<blocksPerGrid, threadsPerBlock>>> (N, a, b, c) 
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Memory Management - allocation 

•  The GPU has a separate memory space from the host 
CPU 

•  Data accessed in kernels must be on GPU memory 
•  Need to manage GPU memory and copy data to and 

from it explicitly 
•  cudaMalloc is used to allocate GPU memory 
•  cudaFree releases it again 
   float *a; 

   cudaMalloc(&a, N*sizeof(float)); 

   … 

   cudaFree(a); 
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Memory Management - cudaMemcpy 
•  Once we've allocated GPU memory, we need to be able to copy data to 

and from it 

•  cudaMemcpy does this: 

 

cudaMemcpy(array_device, array_host, N*sizeof(float), 

 cudaMemcpyHostToDevice); 

cudaMemcpy(array_host, array_device, N*sizeof(float),     

   cudaMemcpyDeviceToHost); 

•  The first argument always corresponds to the destination of the transfer. 

•  Transfers between host and device memory are relatively slow and can 
become a bottleneck, so should be minimised when possible 
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CUDA FORTRAN – Data management 
•  Data management is more intuitive than CUDA C 

•  Because Fortran has array syntax, and also compiler knows if 
a pointer is meant for CPU or GPU memory 

•  Can use allocate() and deallocate() as for host memory 
 real, device, allocatable, dimension(:) :: d_a 

 allocate( d_a(N) ) 
 … 

 deallocate ( d_a ) 

•  Can copy data between host and device using 
assignment 

 d_a = a(1:N) 

•  Or can instead use CUDA API  (similar to C), e.g. 
 istat = cudaMemcpy(d_a, a, N) 

28 



Synchronisation between host and device 

•  Kernel calls are non-blocking. This means that the 
host program continues immediately after it calls 
the kernel  
–  Allows overlap of computation on CPU and GPU 

•  Use cudaThreadSynchronize() to wait for 
kernel to finish 
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•  Standard cudaMemcpy calls are blocking 
–  Non-blocking variants exist 

 
vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(a, b, c); 
//do work on host (that doesn’t depend on c) 
cudaThreadSynchronise(); //wait for kernel to finish 

 



Synchronisation between CUDA threads 

•  Within a kernel, to syncronise between threads in the 
same block use the syncthreads()call 

•  Therefore, threads in the same block can communicate 
through memory spaces that they share, e.g. assuming 
x local to each thread and array in a shared memory 
space 
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•  It is not possible to communicate between different blocks in 
a kernel: must instead exit kernel and start a new one 

if (threadIdx.x == 0) array[0]=x; 
syncthreads(); 
if (threadIdx.x == 1) x=array[0]; 
 



Unified Memory 

•  The GPU has a separate memory space from the host 
CPU 

•  Recent advances in CUDA and in hardware allow this 
aspect to be largely hidden from the programmer with 
automatic data movement. 
–  “Unified Memory” 

•  HOWEVER for performance it is often necessary to 
manually manage these distinct spaces.  
–  And this lecture has shown how to do this 

•  But unified memory can be useful to help get codes 
running quickly  
–  Possibly an incremental stepping stone to manual data 

management  
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Unified Memory 
•  With our previous examples, for each array we maintained both a host 

and device copy. 
–  The device copy was allocated using cudaMalloc 
–  And we used cudaMemcpy to transfer 

•  With Unified Memory, a single copy can be accessed on either the CPU 
or GPU if allocated using the cudaMallocManaged call (and freed 
using cudaFree), e.g.  

 
  float *array; 

  cudaMallocManaged(&array, N*sizeof(float));  

  // array can now be accessed either on host or device 

  ... setup, launch kernel, process output ... 

  cudaFree(array);  

 
•  The data will be automatically transferred to/from the GPU as necessary.  
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Multi-GPU with MPI 

•  In this lecture, you have seen how to adapt a C or 
Fortran code to utilise a GPU using CUDA 

•  We can combine with MPI, to utilise multiple GPUs 
(possibly distributed across multiple nodes) 

•  Simply set the number of MPI tasks equal to the 
number of nodes 
–  And each MPI task controls its own GPU  

•  MPI communications: can either 
–  Explicitly copy from/to GPU with CUDA before/after any MPI 

communications which access host data 
–  Use CUDA-aware MPI (if available) such that MPI directly 

accesses GPU memory 
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Compiling CUDA Code 

•  CUDA C code is compiled using nvcc: 

 nvcc –o example example.cu 

 

•  CUDA Fortran is compiled using PGI compiler 
–  either use .cuf filename extension for CUDA files 
–  and/or pass –Mcuda to the compiler command line 

 

 pgf90 -Mcuda –o example example.cuf 
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OpenCL 

•  Open Compute Language (OpenCL): “The Open 
Standard for Heterogeneous Parallel Programming” 
–  Open cross-platform framework for programming modern 

multicore and heterogeneous systems 

•  Supports wide range of applications and 
architectures, including GPUs 
–  Supported on NVIDIA Tesla + AMD FireStream 
 

•  See http://www.khronos.org/opencl/ 
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OpenCL vs CUDA on NVIDIA 

•  NVIDIA support both CUDA and OpenCL as APIs to the 
hardware. 
–  But put much more effort into CUDA 
–  CUDA more mature, well documented and performs better 

•  OpenCL and C for CUDA conceptually very similar 
–  Very similar abstractions, basic functionality etc 
–  Different names e.g. “Thread” CUDA -> “Work Item” (OpenCL)  
–  Porting between the two should in principle be straightforward 

•  OpenCL is a lower level API than C for CUDA 
–  More work for programmer 

•  OpenCL obviously portable to other systems 
–  But in reality work will still need to be done for efficiency on 

different architecture 

•  OpenCL may well catch up with CUDA given time 
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Summary 

•  Traditional languages alone are not sufficient for 
programming GPUs 

•  CUDA allows NVIDIA GPUs to be programmed using 
C/C++ or Fortran 
–  defines language extensions and APIs to enable this 

•  We introduced the key CUDA concepts and gave 
examples 

•  OpenCL provides another means of programming 
GPUs in C 
–  conceptually similar to CUDA, but less mature and lower-level 
–  supports other hardware as well as NVIDIA GPUs 
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