
Introduction to OpenMP
Cellular Automaton Exercise



Traffic simulation
Boundary swapping

n n+1n-1 n n+1n-1
current value new value new value

n n
current value

– Update rules depend on:

• state of cell

• state of nearest neighbours in both directions



State Table
• If Rt(i) = 0, then Rt+1(i) is given by:

• Rt(i-1) = 0 Rt(i -1) = 1

• Rt(i+1) = 0 0 1

• Rt(i+1) = 1 0 1

• If Rt(i) = 1, then Rt+1(i) is given by:

• Rt(i-1) = 0 Rt(i -1) = 1

• Rt(i+1) = 0 0 0

• Rt(i+1) = 1 1 1



Pseudo Code

declare arrays old(i) and new(i), i = 0,1,...,N,N+1

initialise old(i) for i = 1,2,...,N-1,N (eg randomly)

loop over iterations

set old(0) = old(N) and set old(N+1) = old(1)

loop over i = 1,...,N

if old(i) = 1

if old(i+1) = 1 then new(i) = 1 else new(i) = 0

if old(i) = 0

if old(i-1) = 1 then new(i) = 1 else new(i) = 0

end loop over i

set old(i) = new(i) for i = 1,2,...,N-1,N

end loop over iterations



Parallelisation

• Load balance not an issue
• updates take equal computation regardless of state of road

• split the road into equal pieces of size N/P

• For each piece
• rule for cell i depends on cells i-1 and i+1

• can parallelise as we are updating new array based on old

• Synchronisation required
• to ensure threads do not start until boundary data is updated

• to produce a global sum of the number of cars that move

• to ensure that all threads have finished before next iteration



Shared Variables Parallelisation
serial: initialise old(i) for i = 1,2,...,N-1,N

serial: loop over iterations

serial: set old(0) = old(N) and set old(N+1) = old(1)

parallel: loop over i = 1,...,N

if old(i) = 1

if old(i+1) = 1 then ...

if old(i) = 0

if old(i-1) = 1 then ...

end loop over i

synchronise

parallel: set old(i) = new(i) for i = 1,2,...,N-1,N

synchronise

end loop over iterations

• private: i; shared: old, new, N
• reduction operation to compute number of moves


