

Advanced OpenMP

Nested parallelism

2

Nested parallelism

•  Nested parallelism is supported in OpenMP.

•  If a PARALLEL directive is encountered within another PARALLEL
directive, a new team of threads will be created.

•  This is enabled with the OMP_NESTED environment variable or the
OMP_SET_NESTED routine.

•  If nested parallelism is disabled, the code will still executed, but the
inner teams will contain only one thread.

3

Nested parallelism (cont)

Example:
!$OMP PARALLEL
!$OMP SECTIONS
!$OMP SECTION
!$OMP PARALLEL DO
 do i = 1,n
 x(i) = 1.0
 end do
!$OMP SECTION
!$OMP PARALLEL DO
 do j = 1,n
 y(j) = 2.0
 end do
!$OMP END SECTIONS

!$OMP END PARALLEL

4

Nested parallelism (cont)

•  Not often needed, but can be useful to exploit non-scalable
parallelism (SECTIONS).
–  Also useful if the outer level does not contain enough parallelism

•  Note: nested parallelism isn’t supported in some
implementations (the code will execute, but as if
OMP_NESTED is set to FALSE).
–  turns out to be hard to do correctly without impacting performance

significantly.
–  don’t enable nested parallelism unless you are using it!

Controlling the number of threads

•  Can use the environment variable

export OMP_NUM_THREADS=2,4

•  Will use 2 threads at the outer level and 4 threads for each of
the inner teams.

•  Can use omp_set_num_threads() or the num_threads
clause on the parallel region.

5

6

omp_set_num_threads()

•  Useful if you want inner regions to use different numbers of threads:

CALL OMP_SET_NUM_THREADS(2)
!$OMP PARALLEL DO
 DO I = 1,4
CALL OMP_SET_NUM_THREADS(innerthreads(i))
!$OMP PARALLEL DO
 DO J = 1,N
 A(I,J) = B(I,J)
 END DO
 END DO

•  The value set overrides the value(s) in the environment variable

OMP_NUM_THREADS

7

NUMTHREADS clause

•  One way to control the number of threads used at each level is with the
NUM_THREADS clause:

!$OMP PARALLEL DO NUM_THREADS(2)
 DO I = 1,4
!$OMP PARALLEL DO NUM_THREADS(innerthreads(i))
 DO J = 1,N
 A(I,J) = B(I,J)
 END DO
 END DO

•  The value set in the clause overrides the value in the environment

variable OMP_NUM_THREADS and that set by
omp_set_num_threads()

More control….

•  Can also control the maximum number of threads running at
any one time.

export OMP_THREAD_LIMIT=64

•  …and the maximum depth of nesting

export OMP_MAX_ACTIVE_LEVELS=2

or call

 omp_set_max_active_levels()

8

Utility routines for nested parallelism

•  omp_get_level()
–  returns the level of parallelism of the calling thread
–  returns 0 in the sequential part

•  omp_get_active_level()
–  returns the level of parallelism of the calling thread, ignoring

levels which are inactive (teams only contain one thread)

•  omp_get_ancestor_thread_num(level)
–  returns the thread ID of this thread’s ancestor at a given level
–  ID of my parent:
omp_get_ancestor_thread_num(omp_get_level()-1)

•  omp_get_team_size(level)
–  returns the number of threads in this thread’s ancestor team at a

given level

9

10

Nested loops

•  For perfectly nested rectangular loops we can parallelise multiple loops
in the nest with the collapse clause:

•  Argument is number of loops to collapse starting from the outside

•  Will form a single loop of length NxM and then parallelise and schedule
that.

•  Useful if N is O(no. of threads) so parallelising the outer loop may not
have good load balance

•  More efficient than using nested teams

#pragma omp parallel for collapse(2)
for (int i=0; i<N; i++) {
 for (int j=0; j<M; j++) {

 }
}

Synchronisation in nested parallelism

•  Note that barriers (explicit or implicit) only affect the
innermost enclosing parallel region.

•  No way to have a barrier across multiple teams

•  In contrast, critical regions, atomics and locks affect all the
threads in the program

•  If you want mutual exclusion within teams but not between
them, need to use locks (or atomics).

11

