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Overview

Implicit Vectorisation
What is SIMD?

Explicit Vectorisation

Data Alignment

Summary
Scalar Processing:
Scalar Code

@ Executes one element at a time.

@0 bo al| b1 32 b2 a3 b3
Vector Code

@ Executes on multiple elements at
a time in hardware.

Vector Processing
@ Single Instruction Multiple Data.
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A Brief History

e Pentium (1993):
32 bit: -
e MMX (1997):
64 bit:
e Streaming SIMD Extensions (SSE in 1999,.., SSE4.2 in 2008):

128 bit: I

@ Advanced Vector Extensions (AVX in 2011, AVX2 in 2013):

256 bit: IR

o Intel MIC Architecture (Intel Xeon Phi in 2012):

512 bir: ML
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Why you should care about SIMD (1/2)

@ Big potential performance speed-ups per core.

E.g. for Double Precision FP vector width vs theoretical speed-up over scalar:

128 bit: _ 2x potential for SSE.

256 bit: _ 4 x potential for AVX.

@ 256 bit: _ 8x potential for AVX2 (FMA).

o12 v I S 16 potena for

Xeon Phi (FMA).

Wider vectors allow for higher potential performance gains.

Little programmer effort can often unlock hidden 2-8x in code!
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Why you should care about SIMD (2/2)

The Future:
@ Chip designers like SIMD — low cost, low power, big gains.
o Next Generation Intel Xeon and Xeon Phi (AVX-512):

512 bit:

Not just Intel:
@ ARM Neon - 128 bit SIMD.
o IBM Power8 - 128 bit (VMX)
e AMD Piledriver - 256 bit SIMD (AVX+FMA).

Summary
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Implicit Vectorisation

Many Ways to Vectorise

Auto-Vectorisation (no change to code)

Explicit Vectorisation

Data Alignment

Auto-Vectorisation (w/ compiler hints)

Cilk+)

Excplicit Vectorisation (e.g OpenMP 4,

I Ease of Use

Summary
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Implicit Vectorisation

Auto-Vectorisation

@ Compiler will analyse your loops and generate vectorised versions of them at the
optimisation stage.

o Intel Compiler required flags:
Xeon: -02 -xHost
Mic Native: -02 -mmic
@ On Intel use qopt-report=[n] to see if loop was auto-vectorised.

@ Powerful, but the compiler cannot make unsafe assumptions.
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Auto-Vectorisation

What does the compiler check for:

int xg_size;
void not_vectorisable(float *a, float xb, float xc, int xind) {
for (int i=0; i < xg_size; ++i) {
int j = ind[i];
c[il =ali] +b[il;

o |s xg_size loop-invariant?
@ Do a, b, and c point to different arrays? (Aliasing)

@ Is ind[i] a one-to-one mapping?
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Auto-Vectorisation

This will now auto-vectorise:

int xg_size;
void vectorisable(float % restrict a, float * restrict b, float x
restrict c, int % restrict ind) {
int n = xg_size;
#pragma ivdep
for (int i=0; i < n; ++i) {
int j = ind[i];
c[i] = al[i] + b[i];

@ Dereference *g_size outside of loop.
@ restrict keyword tells compiler there is no aliasing.

o ivdep tells compiler there are no data dependencies between iterations.



Implicit Vectorisation

Auto-Vectorisation Summary

@ Minimal programmer effort. May require some compiler hints.
@ Compiler can decide if scalar loop is more efficient.

@ Powerful, but cannot make unsafe assumptions.
°

Compiler will always choose correctness over performance.
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Explicit Vectorisation

Explicit Vectorisation

There are more involved methods for generating the code you want. These can give
you:

@ Fine-tuned performance.

@ Advanced things the auto-vectoriser would never think of.
o Greater performance portability.

This comes at a price of increased programmer effort and possibly decreased portability.
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Explicit Vectorisation

Compiler’s Responsibilities
@ Allow programmer to declare that code can and should be run in SIMD.

o Generate the code that the programmer asked for.

Programmer’s Responsibilities
o Correctness (e.g. no dependencies or incorrect memory accesses)

e Efficiency (e.g. alignment, strided memory access)
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Vectorise with OpenMP4.0 SIMD

OpenMP 4.0 ratified July 2013.
Specifications: http://openmp.org/wp/openmp-specifications/

Industry standard.

OpenMP 4.0 new feature: SIMD pragmas!


http://openmp.org/wp/openmp-specifications/
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OpenMP — Pragma SIMD

@ Pragma SIMD:
“The simd construct can be applied to a loop to indicate that the loop can be
transformed into a SIMD loop (that is, multiple iterations of the loop can be
executed concurrently using SIMD instructions).” - OpenMP 4.0 Spec.

e Syntax in C/CH++:

#pragma omp simd [clause [,clause]...]
for (int i=0; i<N; 4++i)

@ Syntax in Fortran:

lomp$ simd [clause [,clause]...]
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OpenMP — Pragma SIMD Clauses

@ safelen(len)
len must be a power of 2: The compiler can assume a vectorization for a vector
length of len to be safe.

@ private(vl, v2, ...): Variables private to each lane.

@ linear(vl:stepl, v2:step2, ...)
For every iteration of original scalar loop v1 is incremented by stepl,... etc.
Therefore it is incremented by stepl * vector length for the vectorised loop.

@ reduction(operator:vl,v2,...):
Variables v1, v2,...etc. are reduction variables for operation operator.

@ collapse(n): Combine nested loops.

@ aligned(vl:base,v2:base,...): Tell compiler variables v1, v2,... are aligned.
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OpenMP — SIMD Example 1

The old example that wouldn’t auto-vectorise will do so now with SIMD:

int xg_size;
void vectorisable(float *a, float *b, float xc, int xind) {
#pragma omp simd
for (int i=0; i < xg_size; ++i) {
int j = ind[i]
clil'=ali] +b[i];

@ The programmer asserts that there is no aliasing or loop variance.

@ Explicit SIMD lets you express what you want, but correctness is your
responsibility.
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OpenMP — SIMD Example 2

An example of SIMD reduction:

int xg_size;
void vec_reduce(float *a, float b, float xc) {
float sum=0;
#pragma omp simd reduction (+:sum)
for (int i=0; i < xg_size; ++i) {
int j = ind[i];
cli] = ali] + blil;
sum += c[j];

@ sum should be treated as a reduction.
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OpenMP — SIMD Example 3

An example of SIMD reduction with linear clause.
float sum = 0.0f;
float *xp = a;
int step = 4;
#pragma omp simd reduction(+:sum) linear(p:step)
for (int i = 0; i < N; ++i) {

sum += xp;

p += step;

@ linear clause tells the compiler that p has a linear relationship w.r.t the iterations
space. i.e. it is computable from the loop index —p_i = p.0 + i * step.

@ It also means that p is SIMD lane private.
@ lIts initial value is the value before the loop.

@ After the loop p is set to the value it was in the sequentially last iteration.
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SIMD Enabled Functions

@ SIMD-enabled functions allow user defined functions to be vectorised when they
are called from within vectorised loops.

@ The vector declaration and associated modifying clauses specify the vector and
scalar nature of the function arguments.

e Syntax C/C++:

#pragma omp declare simd [clause [,clause]...]
function definition or declaration

@ Syntax Fortran:

I$omp declare simd(proc—name) [clause[[,] clause] ...]
function definition or declaration
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SIMD-Enabled Function Clauses

@ simdlen(len)
len must be a power of 2: generate a function that works for this vector length.
@ linear(vl:stepl, v2:step2, ...)
For every iteration of original scalar loop v1 is incremented by stepl,... etc.
Therefore it is incremented by stepl * vector length for the vectorised loop.
@ uniform(al,a2,...)
Arguments al, a2,... etc are not treated as vectors (constant values across SIMD
lanes).
@ inbranch, notinbranch: SIMD-enabled function called only insde branches or
never.

@ aligned(vl:base,v2:base,...): Tell compiler variables v1, v2,... are aligned.
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SIMD-Enabled Functions — Example

@ Write a function for one element and add pragma as follows:

#pragma omp declare simd

float foo(float a, float b, float c, float d) {
return axb 4+ cxd;

}

@ You can call the scalar version as per usual:

e = foo(a, b, c, d);

@ Call vectorised version in a SIMD loop:

#pragma omp simd
for (i=0; i < n; ++i) {
: E[i] = foo(A[i], B[i], C[i], D[i]);
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SIMD-Enabled Functions — Recommendations

@ SIMD-enabled functions still incur overhead.

@ Inlining is always better, if possible.
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Explicit Vectorisation — CilkPlus Array Notation

@ An extension to C/C++.

@ Perform operations on sections of arrays in parallel.

@ Example, vector addition:
Al:] =B[:] + C[:];

@ Looks like matlab/numpy/fortran,... but in C/C+4+!
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Explicit Vectorisation — CilkPlus Array Notation

@ Syntax:
Al:]
Alstart_index : length]
A[start_index : length : stride]
@ Use " for all elements

@ ‘length” specifies the number of elements of a subset. N.B. Not like F90.

@ “stride” is the distance between elements for subset.
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Explicit Vectorisation — CilkPlus Array Notation

@ Array notation also works with SIMD-enabled functions:
A[:] = mysimdfn(B[:], C[:]);

@ Reductions on vectors done via predefined functions e.g.:

__sec_reduce_add , __sec_reduce_mul,

__sec_reduce_all_zero , __sec_reduce_all_nonzero ,

__sec_reduce_max, __sec_reduce_min ,
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Array Notation Performance Issues

Long Form Short Form
C[0:N] = A[0:N] + B[O:N]; for (i=0; i<N; i+=V) {
D[0:N] = C[0:N] * C[O0:N]; Cl[i:V] = A[i:V] + B[i:V];
D[i:V] = C[i:V] = C[i:V];
}

@ Long form is more elegant, but the short form will actually have better
performance.
o If we expand the expressions back into for loops:

e For large N, the long form will kick C out of cache. No reuse in next loop.
e For appropriate V in the short form C can even be kept in registers.

@ This is applicable for Fortran as well as Cilk Plus.
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CilkPlus Availability

The following support Cilk Plus array notation (as well as its other features):
o GNU GCC 4.9+:
o Enable with -fcilkplus
e clang/LLVM 3.5:

o Not official branch yet but development branch exists:
http://cilkplus.github.io/
o Enable with -fcilkplus

o Intel C/C++ compiler since version 12.0.


http://cilkplus.github.io/

Explicit Vectorisation

Implicit vs Explicit Vectorisation

Implicit

@ Automatic dependency analysis (e.g. °
reductions).

@ Recognises idioms with data °
dependencies.

@ Non-inline functions are scalar. °

@ Limited support for outer-loop °
vectorisation (possible in -O3). °

@ Relies on the compiler’s ability to

recognise patterns/idioms it knows
how to vectorise.

Explicit

No dependency analysis (e.g.
reductions declared explicitly).

Recognises idioms without data
dependencies.

Non-inline functions can be vectorised.
Outer loops can be vectorised.

May be more cross-compiler portable.
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Implicit vs Explicit Vectorisation
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Data Alignment Summary
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M. Klemm, A. Duran, X. Tian, H. Saito, D. Caballero, and X. Martorell, “Extending OpenMP with Vector Constructs for Modern
Multicore SIMD Architectures. In Proc. of the Intl. Workshop on OpenMP”, pages 59-72, Rome, Italy, June 2012. LNCS 7312.
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Data Alignment

Data Alignment — Why it Matters

Cache Line 0 Cache Line 1

TTTTHH QE?HIHI

[o]1]2]3] 6]7]8]9

Aligned Load Unaligned Load
@ Address is aligned. @ Address is not aligned.
@ One cache line. @ Potentially multiple cache lines.
@ One instruction. @ Potentially multiple instructions.

@ 2-version vector/remainder. @ 3-version peel /vector/remainder.
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Data Alignment — Workflow

O Align your data.
@ Access your memory in an aligned way.

© Tell the compiler the data is aligned.



Data Alignment

1. Align Your Data

@ Automatic / free-store arrays in C/C++:
float a[l1024] __attribute__((aligned(64)));

@ Heap arrays in C/C++:

float *a = _mm_malloc(1024xsizeof(xa), 64); // on Intel/GNU
_mm_free(a); // need this to free!

(For non-Intel there is also posix memalign and aligned alloc (C11)).

@ In Fortran:

prettyc
real :: A(1024)
I'dir$ attributes align: 64 :: A
real , allocatable :: B(512)

I'dir$ attributes align: 64 :: B



Data Alignment

2. Access Memory in Aligned Way

e Example:

float a[N] __attribute__((aligned(64));

for (int i=0; i<N; 4+i)
ali] = ...,

e Starting from an aligned boundary e.g. a[0], a[16], ...



3. Tell the Compiler

In C/C++:
@ #pragma vector aligned
@ #pragma omp simd
aligned(p:64)
@ __assume_aligned(p, 16)

@ __assume (i%16==0)

Data Alignment

In Fortran:

'dir$ vector aligned
lomp$ simd aligned(p:64)
ldir$ assume aligned(p, 16)

!dir$ assume
(mod(i,16).eq.0)



Alignment Example

float xa = _mm_malloc(nxsizeof(xa), 64);
float xb = _mm_malloc(n*sizeof (xb), 64);
float xc = _mm_malloc(nxsizeof (xc), 64);

#pragma omp simd aligned(a:64,b:64,c:64)
for (int i=0; i<n; ++i) {

ali] =b[i] + c[i];
}

Data Alignment
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Aligning Multi-dimensional Arrays 1/2

@ Consider a 15 x 15 sized array of doubles. If we do:

doublex a = _mm_malloc(15%15%sizeof (xa), 64);

@ a[0] is aligned.
@ a[i*15+0] for / > 0 are not aligned.
@ The following may seg-fault:

for (int i=0; i<n; ++i) {
#pragma omp simd aligned(a:64)
for (int j=0; j<n; ++j) {
b[j] = alixnti];
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Aligning Multi-dimensional Arrays 2/2

@ We need add padding to every row of the array so each row starts on a 64 byte
boundary.

@ For 15 x 15 we should alloc 15 x 16.
@ Useful code:

int n_pad
doublex a

(n+7) & ~7;
_mm_malloc(nxn_padx*sizeof(xa), 64);

@ The following is now valid:

for (int i=0; i<n; ++i) {
__assume(n_pad % 8 = 0);
#pragma omp simd aligned(a:64)
for (int j=0; j<n; ++j) {
b[j] = ali*n padtil;
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Summary

Summary

@ What we have learned:

o Why vectorisation is important.

How the vector units on modern processors can provide big speed-ups with often
small effort.

Auto-vectorisation in modern compilers.

Explicit vectorisation with OpenMP4.0, and array notation.

SIMD-Enabled functions.

How to align data and why it helps SIMD performance.
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