Overview Implicit Vectorisation Explicit Vectorisation

Data Alignment

Summary

James Briggs

1COSMOS DiRAC

April 28, 2015

«O>r «F»r <

thit
a
it

DA

Session Plan

© Overview
© Implicit Vectorisation
© Explicit Vectorisation

@ Data Alignment

e Summary

Overview

Implicit Vectorisation Explicit Vectorisation

Data Alignment

Summary

Section 1

nae

Overview

Implicit Vectorisation
What is SIMD?

Explicit Vectorisation

Data Alignment

Summary
Scalar Processing:
Scalar Code

@ Executes one element at a time.

@0 bo al| b1 32 b2 a3 b3
Vector Code

@ Executes on multiple elements at
a time in hardware.

Vector Processing
@ Single Instruction Multiple Data.

Overview Implicit Vectorisation Explicit Vectorisation Data Alignment Summary

A Brief History

e Pentium (1993):
32 bit: -
e MMX (1997):
64 bit:
e Streaming SIMD Extensions (SSE in 1999,.., SSE4.2 in 2008):

128 bit: I

@ Advanced Vector Extensions (AVX in 2011, AVX2 in 2013):

256 bit: IR

o Intel MIC Architecture (Intel Xeon Phi in 2012):

512 bir: ML

u]
)
I
il
it

Overview Implicit Vectorisation Explicit Vectorisation Data Alignment Summary

Why you should care about SIMD (1/2)

@ Big potential performance speed-ups per core.

E.g. for Double Precision FP vector width vs theoretical speed-up over scalar:

128 bit: _ 2x potential for SSE.

256 bit: _ 4 x potential for AVX.

@ 256 bit: _ 8x potential for AVX2 (FMA).

o12 v I S 16 potena for

Xeon Phi (FMA).

Wider vectors allow for higher potential performance gains.

Little programmer effort can often unlock hidden 2-8x in code!

Overview Implicit Vectorisation Explicit Vectorisation Data Alignment

Why you should care about SIMD (2/2)

The Future:
@ Chip designers like SIMD — low cost, low power, big gains.
o Next Generation Intel Xeon and Xeon Phi (AVX-512):

512 bit:

Not just Intel:
@ ARM Neon - 128 bit SIMD.
o IBM Power8 - 128 bit (VMX)
e AMD Piledriver - 256 bit SIMD (AVX+FMA).

Summary

Overview

Implicit Vectorisation

Many Ways to Vectorise

Explicit Vectorisation

Data Alignment

I Ease of Use

Summary

Overview

Implicit Vectorisation

Many Ways to Vectorise

Auto-Vectorisation (no change to code)

Explicit Vectorisation

Data Alignment

Auto-Vectorisation (w/ compiler hints)

Cilk+)

Excplicit Vectorisation (e.g OpenMP 4,

I Ease of Use

Summary

Overview Implicit Vectorisation Explicit Vectorisation

Data Alignment

Summary

Section 2

DA

Implicit Vectorisation

Auto-Vectorisation

@ Compiler will analyse your loops and generate vectorised versions of them at the
optimisation stage.

o Intel Compiler required flags:
Xeon: -02 -xHost
Mic Native: -02 -mmic
@ On Intel use qopt-report=[n] to see if loop was auto-vectorised.

@ Powerful, but the compiler cannot make unsafe assumptions.

Implicit Vectorisation

Auto-Vectorisation

What does the compiler check for:

int xg_size;
void not_vectorisable(float *a, float xb, float xc, int xind) {
for (int i=0; i < xg_size; ++i) {
int j = ind[i];
c[il =ali] +b[il;

o |s xg_size loop-invariant?
@ Do a, b, and c point to different arrays? (Aliasing)

@ Is ind[i] a one-to-one mapping?

Implicit Vectorisation

Auto-Vectorisation

This will now auto-vectorise:

int xg_size;
void vectorisable(float % restrict a, float * restrict b, float x
restrict c, int % restrict ind) {
int n = xg_size;
#pragma ivdep
for (int i=0; i < n; ++i) {
int j = ind[i];
c[i] = al[i] + b[i];

@ Dereference *g_size outside of loop.
@ restrict keyword tells compiler there is no aliasing.

o ivdep tells compiler there are no data dependencies between iterations.

Implicit Vectorisation

Auto-Vectorisation Summary

@ Minimal programmer effort. May require some compiler hints.
@ Compiler can decide if scalar loop is more efficient.

@ Powerful, but cannot make unsafe assumptions.
°

Compiler will always choose correctness over performance.

Overview

Implicit Vectorisation

Explicit Vectorisation

Data Alignment

Summary

Section 3

DA

Explicit Vectorisation

Explicit Vectorisation

There are more involved methods for generating the code you want. These can give
you:

@ Fine-tuned performance.

@ Advanced things the auto-vectoriser would never think of.
o Greater performance portability.

This comes at a price of increased programmer effort and possibly decreased portability.

Explicit Vectorisation

Explicit Vectorisation

Compiler’s Responsibilities
@ Allow programmer to declare that code can and should be run in SIMD.

o Generate the code that the programmer asked for.

Programmer’s Responsibilities
o Correctness (e.g. no dependencies or incorrect memory accesses)

e Efficiency (e.g. alignment, strided memory access)

Explicit Vectorisation

Vectorise with OpenMP4.0 SIMD

OpenMP 4.0 ratified July 2013.
Specifications: http://openmp.org/wp/openmp-specifications/

Industry standard.

OpenMP 4.0 new feature: SIMD pragmas!

http://openmp.org/wp/openmp-specifications/

Explicit Vectorisation

OpenMP — Pragma SIMD

@ Pragma SIMD:
“The simd construct can be applied to a loop to indicate that the loop can be
transformed into a SIMD loop (that is, multiple iterations of the loop can be
executed concurrently using SIMD instructions).” - OpenMP 4.0 Spec.

e Syntax in C/CH++:

#pragma omp simd [clause [,clause]...]
for (int i=0; i<N; 4++i)

@ Syntax in Fortran:

lomp$ simd [clause [,clause]...]

Explicit Vectorisation

OpenMP — Pragma SIMD Clauses

@ safelen(len)
len must be a power of 2: The compiler can assume a vectorization for a vector
length of len to be safe.

@ private(vl, v2, ...): Variables private to each lane.

@ linear(vl:stepl, v2:step2, ...)
For every iteration of original scalar loop v1 is incremented by stepl,... etc.
Therefore it is incremented by stepl * vector length for the vectorised loop.

@ reduction(operator:vl,v2,...):
Variables v1, v2,...etc. are reduction variables for operation operator.

@ collapse(n): Combine nested loops.

@ aligned(vl:base,v2:base,...): Tell compiler variables v1, v2,... are aligned.

Explicit Vectorisation

OpenMP — SIMD Example 1

The old example that wouldn’t auto-vectorise will do so now with SIMD:

int xg_size;
void vectorisable(float *a, float *b, float xc, int xind) {
#pragma omp simd
for (int i=0; i < xg_size; ++i) {
int j = ind[i]
clil'=ali] +b[i];

@ The programmer asserts that there is no aliasing or loop variance.

@ Explicit SIMD lets you express what you want, but correctness is your
responsibility.

Explicit Vectorisation

OpenMP — SIMD Example 2

An example of SIMD reduction:

int xg_size;
void vec_reduce(float *a, float b, float xc) {
float sum=0;
#pragma omp simd reduction (+:sum)
for (int i=0; i < xg_size; ++i) {
int j = ind[i];
cli] = ali] + blil;
sum += c[j];

@ sum should be treated as a reduction.

Explicit Vectorisation

OpenMP — SIMD Example 3

An example of SIMD reduction with linear clause.
float sum = 0.0f;
float *xp = a;
int step = 4;
#pragma omp simd reduction(+:sum) linear(p:step)
for (int i = 0; i < N; ++i) {

sum += xp;

p += step;

@ linear clause tells the compiler that p has a linear relationship w.r.t the iterations
space. i.e. it is computable from the loop index —p_i = p.0 + i * step.

@ It also means that p is SIMD lane private.
@ lIts initial value is the value before the loop.

@ After the loop p is set to the value it was in the sequentially last iteration.

Explicit Vectorisation

SIMD Enabled Functions

@ SIMD-enabled functions allow user defined functions to be vectorised when they
are called from within vectorised loops.

@ The vector declaration and associated modifying clauses specify the vector and
scalar nature of the function arguments.

e Syntax C/C++:

#pragma omp declare simd [clause [,clause]...]
function definition or declaration

@ Syntax Fortran:

I$omp declare simd(proc—name) [clause[[,] clause] ...]
function definition or declaration

Explicit Vectorisation

SIMD-Enabled Function Clauses

@ simdlen(len)
len must be a power of 2: generate a function that works for this vector length.
@ linear(vl:stepl, v2:step2, ...)
For every iteration of original scalar loop v1 is incremented by stepl,... etc.
Therefore it is incremented by stepl * vector length for the vectorised loop.
@ uniform(al,a2,...)
Arguments al, a2,... etc are not treated as vectors (constant values across SIMD
lanes).
@ inbranch, notinbranch: SIMD-enabled function called only insde branches or
never.

@ aligned(vl:base,v2:base,...): Tell compiler variables v1, v2,... are aligned.

Explicit Vectorisation

SIMD-Enabled Functions — Example

@ Write a function for one element and add pragma as follows:

#pragma omp declare simd

float foo(float a, float b, float c, float d) {
return axb 4+ cxd;

}

@ You can call the scalar version as per usual:

e = foo(a, b, c, d);

@ Call vectorised version in a SIMD loop:

#pragma omp simd
for (i=0; i < n; ++i) {
: E[i] = foo(A[i], B[i], C[i], D[i]);

Explicit Vectorisation

SIMD-Enabled Functions — Recommendations

@ SIMD-enabled functions still incur overhead.

@ Inlining is always better, if possible.

Explicit Vectorisation

Explicit Vectorisation — CilkPlus Array Notation

@ An extension to C/C++.

@ Perform operations on sections of arrays in parallel.

@ Example, vector addition:
Al:] =B[:] + C[:];

@ Looks like matlab/numpy/fortran,... but in C/C+4+!

Explicit Vectorisation

Explicit Vectorisation — CilkPlus Array Notation

@ Syntax:
Al:]
Alstart_index : length]
A[start_index : length : stride]
@ Use " for all elements

@ ‘length” specifies the number of elements of a subset. N.B. Not like F90.

@ “stride” is the distance between elements for subset.

Explicit Vectorisation

Explicit Vectorisation — CilkPlus Array Notation

@ Array notation also works with SIMD-enabled functions:
A[:] = mysimdfn(B[:], C[:]);

@ Reductions on vectors done via predefined functions e.g.:

__sec_reduce_add , __sec_reduce_mul,

__sec_reduce_all_zero , __sec_reduce_all_nonzero ,

__sec_reduce_max, __sec_reduce_min ,

Explicit Vectorisation

Array Notation Performance Issues

Long Form Short Form
C[0:N] = A[0:N] + B[O:N]; for (i=0; i<N; i+=V) {
D[0:N] = C[0:N] * C[O0:N]; Cl[i:V] = A[i:V] + B[i:V];
D[i:V] = C[i:V] = C[i:V];
}

@ Long form is more elegant, but the short form will actually have better
performance.
o If we expand the expressions back into for loops:

e For large N, the long form will kick C out of cache. No reuse in next loop.
e For appropriate V in the short form C can even be kept in registers.

@ This is applicable for Fortran as well as Cilk Plus.

Explicit Vectorisation

CilkPlus Availability

The following support Cilk Plus array notation (as well as its other features):
o GNU GCC 4.9+:
o Enable with -fcilkplus
e clang/LLVM 3.5:

o Not official branch yet but development branch exists:
http://cilkplus.github.io/
o Enable with -fcilkplus

o Intel C/C++ compiler since version 12.0.

http://cilkplus.github.io/

Explicit Vectorisation

Implicit vs Explicit Vectorisation

Implicit

@ Automatic dependency analysis (e.g. °
reductions).

@ Recognises idioms with data °
dependencies.

@ Non-inline functions are scalar. °

@ Limited support for outer-loop °
vectorisation (possible in -O3). °

@ Relies on the compiler’s ability to

recognise patterns/idioms it knows
how to vectorise.

Explicit

No dependency analysis (e.g.
reductions declared explicitly).

Recognises idioms without data
dependencies.

Non-inline functions can be vectorised.
Outer loops can be vectorised.

May be more cross-compiler portable.

Overview

Implicit Vectorisation

Explicit Vectorisation

Implicit vs Explicit Vectorisation

5.00x
4.50x
4.00x
3.50x
3.00x
2.50x
2.00x
1.50x
1.00x
0.50x
0.00x

Relative Speed-up
(higher is better)

Data Alignment Summary

B |CC auto-vec

4.34x
mICC SIMD directive
366x
2.40x
2.04x 213x
‘ ‘ |
Mandelbrot Volume BlackScholes Fast Walsh Perlin Noise SGpp
Rendering

M. Klemm, A. Duran, X. Tian, H. Saito, D. Caballero, and X. Martorell, “Extending OpenMP with Vector Constructs for Modern
Multicore SIMD Architectures. In Proc. of the Intl. Workshop on OpenMP”, pages 59-72, Rome, Italy, June 2012. LNCS 7312.

u]

)
I
il

it

Overview

Implicit Vectorisation Explicit Vectorisation

Data Alignment

Summary

Section 4

nae

Data Alignment

Data Alignment — Why it Matters

Cache Line 0 Cache Line 1

TTTTHH QE?HIHI

[o]1]2]3] 6]7]8]9

Aligned Load Unaligned Load
@ Address is aligned. @ Address is not aligned.
@ One cache line. @ Potentially multiple cache lines.
@ One instruction. @ Potentially multiple instructions.

@ 2-version vector/remainder. @ 3-version peel /vector/remainder.

Data Alignment

Data Alignment — Workflow

O Align your data.
@ Access your memory in an aligned way.

© Tell the compiler the data is aligned.

Data Alignment

1. Align Your Data

@ Automatic / free-store arrays in C/C++:
float a[l1024] __attribute__((aligned(64)));

@ Heap arrays in C/C++:

float *a = _mm_malloc(1024xsizeof(xa), 64); // on Intel/GNU
_mm_free(a); // need this to free!

(For non-Intel there is also posix memalign and aligned alloc (C11)).

@ In Fortran:

prettyc
real :: A(1024)
I'dir$ attributes align: 64 :: A
real , allocatable :: B(512)

I'dir$ attributes align: 64 :: B

Data Alignment

2. Access Memory in Aligned Way

e Example:

float a[N] __attribute__((aligned(64));

for (int i=0; i<N; 4+i)
ali] = ...,

e Starting from an aligned boundary e.g. a[0], a[16], ...

3. Tell the Compiler

In C/C++:
@ #pragma vector aligned
@ #pragma omp simd
aligned(p:64)
@ __assume_aligned(p, 16)

@ __assume (i%16==0)

Data Alignment

In Fortran:

'dir$ vector aligned
lomp$ simd aligned(p:64)
ldir$ assume aligned(p, 16)

!dir$ assume
(mod(i,16).eq.0)

Alignment Example

float xa = _mm_malloc(nxsizeof(xa), 64);
float xb = _mm_malloc(n*sizeof (xb), 64);
float xc = _mm_malloc(nxsizeof (xc), 64);

#pragma omp simd aligned(a:64,b:64,c:64)
for (int i=0; i<n; ++i) {

ali] =b[i] + c[i];
}

Data Alignment

Data Alignment

Aligning Multi-dimensional Arrays 1/2

@ Consider a 15 x 15 sized array of doubles. If we do:

doublex a = _mm_malloc(15%15%sizeof (xa), 64);

@ a[0] is aligned.
@ a[i*15+0] for / > 0 are not aligned.
@ The following may seg-fault:

for (int i=0; i<n; ++i) {
#pragma omp simd aligned(a:64)
for (int j=0; j<n; ++j) {
b[j] = alixnti];

Data Alignment

Aligning Multi-dimensional Arrays 2/2

@ We need add padding to every row of the array so each row starts on a 64 byte
boundary.

@ For 15 x 15 we should alloc 15 x 16.
@ Useful code:

int n_pad
doublex a

(n+7) & ~7;
_mm_malloc(nxn_padx*sizeof(xa), 64);

@ The following is now valid:

for (int i=0; i<n; ++i) {
__assume(n_pad % 8 = 0);
#pragma omp simd aligned(a:64)
for (int j=0; j<n; ++j) {
b[j] = ali*n padtil;

Overview

Implicit Vectorisation Explicit Vectorisation

Data Alignment

Summary

Section 5

nae

Summary

Summary

@ What we have learned:

o Why vectorisation is important.

How the vector units on modern processors can provide big speed-ups with often
small effort.

Auto-vectorisation in modern compilers.

Explicit vectorisation with OpenMP4.0, and array notation.

SIMD-Enabled functions.

How to align data and why it helps SIMD performance.

	Overview
	Implicit Vectorisation
	Explicit Vectorisation
	Data Alignment
	Summary

