Case Study: Modal2d Surveying the Code Making it Offloadable

Offload Mode Case Study

James Briggs

1COSMOS DiRAC

April 28, 2015

Case Study: Modal2d

Case Study: Modal2d

@ MODAL is an early universe
simulation and analysis code used
to probe the Cosmic Microwave
Background (CMB).

@ Analyses higher-order correlation
functions beyond the power
spectrum.

1000 1500

500

@ Novel algorithm for efficient mode
expansion to measure reconstruct °n‘**=50uu:;
the CMB bispectrum for the first A
time.

0l
<m0 1000 1500
fa

o Fast and efficient ¢ b Bispectrum of CMB. Source: Planck 2013
ast and erficient way to probe results. XXIV. Constraints on primordial

cosmological data for hints of new non-Gaussianity
physics in the early universe.

Surveying the Code

Surveying the Code

@ Original code is pure C and parallelised with MPI only.
@ Already vectorised the code on Xeon to great success and there is enough
potential parallelism for threads = great Xeon Phi potential?

@ Library dependencies — GSL, iniparser, FFTW — for initialisation and |/O.
(Outside of main loop).

o Compiling for native with -mmic tedious because | need to compile the external
libraries for Xeon Phi too.

o Likely less tedious to test Xeon Phi with offload than native.

Surveying the Code

Pseudo-code

@ Want to offload the computationally most expensive part.
@ Pseudo-code for main loop:

MPI_for n in primoridal_modes:
MPI_for m in late_modes:

y = double[xsize]
for x in range (0, xsize):
y[i] += x[i]*x[i] * gamma_pt(n,m,i);

gamma[n][m] = gsl_integrate(x[], y[]):
MPI_Reduce (gamma[][]) ;

e Output = gamma[] [].
@ The n and m loops are decomposed over MPI tasks. Typical size ((1000).

@ gamma pt routine has a /ot of work and is well vectorised.

Making it Offloadable

Making it Offloadable (1/3)

MPI_for n in primoridal_modes:
MPI_for m in late_modes:
y = double[xsize]
for x in range (0, xsize):
y[i] 4= x[i]*x[i] * gamma_pt(n,m,i);
gamma[n][m] = gsl_integrate(x[], y[]):

MPI_Reduce(gamma[][]) ;

@ Integration has GSL dependency.

@ Negligible in profile = write my own integration routine and remove the
dependency.

Making it Offloadable

Making it Offloadable (2/3)

MPI_for n in primoridal_modes:
MPI_for m in late_modes:
y = double[xsize]
for x in range (0, xsize):
y[i] 4= x[i]*x[i] * gamma_pt(n,m,i);
gamma[n][m] = my_integrate(x[], y[]):

MPI_Reduce (gamma [][]) ;

o lntegration-has-GSk-dependeney-

@ Negligible in profile = write my own integration routine and remove the
dependency.

Making it Offloadable

Making it Offloadable (3/3)

@ Add offload pragma before main loop...

#pragma offload target(mic:0)
inout (gamma : length (N«M) ALLOC FREE) \
in(primordial_modes, late_modes, mpi_vars)
MPI_for n in primoridal_modes:
MPI_for m in late_modes:
y[0: xsize] = 0.0;
for x in range (0, xsize):
y[i] 4= x[i]*x[i] * gamma_pt(n,m,i);
gamma[n][m] = my_integrate(x[], y[]):

// end offload region
MPI_Reduce (gamma [][]) ;

@ Done? Nope. Just starting!

Making it Offloadable

Tracking Down the Offloadables (1/3)

@ Doesn’t compile! — Missing symbols.

@ Need to track down all the functions and global variables used in the main loop
and declare them offloadable:

__attribute__((target(mic)))
double gamma_pt(int n, int m, int i);

@ This part can be fiddly. Help:

e Missing symbols will be found at compile time.
e ctags with Vim or Emacs very useful for chasing down dependencies.
o IDE could also have useful tools to help do this.

Making it Offloadable

Tracking Down the Offloadables (2/3)

Code now compiles, but the result is garbage!

Declaring offloadable is only half the battle.

@ Code has a lot of read-only global variables.

Declaring variables offloadable just means that their symbols are visible on the
MIC side.

e Data isn’t necessarily also there.

Making it Offloadable

Tracking Down the Offloadables (3/3)

@ Need to track down the required global variables, and do an #pragma
offload_transfer when their values are set.

@ Allinea DDT offload debugger is useful for finding uninitialised variables
offload-side.

e Now done :-).

Making it Offloadable

Aside: Multi-dimensional Arrays

(]

Main loop reads several multi-dimensional arrays.

These are implemented as arrays-of-pointers.

Offload data transfers in LEO won't offload these properly.

e Work-around: transfer them flat, then rebuild / reinterpret dimensions on the
'other-side’.
o C one-liner to reinterpret flat array (basis_flat) as 2-dimensional (basis):

double (% restrict basis)[lsize_pad] = (double (xrestrict)]
Isize_pad]) basis_flat;

Xeon Phi Performance

Xeon Phi Performance

o After offloading added threads via OpenMP of nm loops.

@ This makes code OpenMP/MPI hybrid. Each MPI rank offloads to its own card
and uses all the cores.

@ With vectorisation enabled in main loop, test case:
e 2x SandyBridge = 167s (2.7x original).
e 1x Xeon Phi = 75s (6.0x original).
e 1x Xeon Phi = 2.23x 2x SandyBridge.

	Case Study: Modal2d
	Surveying the Code
	Making it Offloadable
	Xeon Phi Performance

