
NATIVE MODE

PROGRAMMING

Adrian Jackson
adrianj@epcc.ed.ac.uk

@adrianjhpc

Overview

• What is native mode?

• What codes are suitable for native mode?

• MPI and OpenMP in native mode

• MPI performance in native mode

• OpenMP thread placement

• How to run over multiple Xeon Phi cards

• Symmetric mode using both host & Xeon Phi

Native mode: introduction
• Range of different methods to access the Xeon Phi

• native mode

• offload mode

• symmetric mode

• This lecture will concentrate mostly on native mode

• In native mode:
• ssh directly into the card, running own Linux OS

• Run applications on the command line

• Use any of the supported parallel programming models to make
use of the 240 virtual threads available

• Can be a quick way to get a code running on the Xeon
Phi

• Not all applications are suitable for native execution

Steps for running in native mode

• Determine if your application is suitable (see next slide)

• Compile application for native execution

• Essentially just add the –mmic flag

• Build any libraries for native execution

• Depending on your system you may also need to:

• Copy binaries, dependencies, input files locally to Xeon Phi card

• If Xeon Phi and host are cross-mounted you won’t need to do this

• Log in to Xeon Phi, set up environment, run application

Suitability for native mode

• Remember native mode gives you access to up to 240

virtual cores

• You want to use as many of these as possible

• Your application should have the following characteristics:

• A small memory footprint using less than the memory on the card

• Be highly parallel

• Very little serial code – this will be even slower on the Xeon Phi

• Minimal I/O – NFS allows external I/O but limited bandwidth

• Complex code with no well defined hotspots

Compiling for native execution

• Compile on the host using the –mmic flag e.g.

ifort -mmic helloworld.f90 -o helloworld

• NB: You must compile on a machine with a Xeon Phi card

attached as you need access to the MPSS libraries etc at

compile time

• Any libraries your code uses have to be built with –mmic

• If you use libraries such as LAPACK, BLAS, FFTW etc

then you can link to the Xeon Phi version of MKL

Compiling for native execution

• MPI and OpenMP compilation are identical to host, just
add the –mmic flag e.g.

MPI

mpiicc -mmic helloworld_mpi.c -o helloworld_mpi

OpenMP

icc -openmp -mmic helloworld_omp.c -o helloworld_omp

Running a native application

• Login to the Xeon Phi card

• Copy any files across locally if required

• Set up your environment

• Run the application

Running a native application – MPI

[host src]$ ssh mic0

[mic0 ~]$ cd /home-hydra/h012/fiona/src

[mic0 src]$ source /opt/intel/composer_xe_2015/mkl/bin/mklvars.sh mic

[mic0 src]$ source /opt/intel/impi/5.0.3.048/mic/bin/mpivars.sh

[mic0 src]$ mpirun -n 4 ./helloworld_mpi

Hello world from process 1 of 4

Hello world from process 2 of 4

Hello world from process 3 of 4

Hello world from process 0 of 4

Running a native application – OpenMP

[host src]$ ssh mic0

[mic0 ~]$ cd /home-hydra/h012/fiona/src

[mic0 src]$ export OMP_NUM_THREADS=8

[mic0 src]$ source /opt/intel/composer_xe_2015/mkl/bin/mklvars.sh mic

[mic0 src]$./helloworld_omp

Maths computation on thread 1 = 0.000003

Maths computation on thread 0 = 0.000000

Maths computation on thread 2 = -0.000005

Maths computation on thread 3 = 0.000008

Maths computation on thread 5 = 0.000013

Maths computation on thread 4 = -0.000011

Maths computation on thread 7 = 0.000019

Maths computation on thread 6 = -0.000016

Running a native application – MPI/OpenMP

[host src]$ ssh mic0

[mic0 ~]$ cd /home-hydra/h012/fiona/src

[mic0 src]$ export OMP_NUM_THREADS=4

[mic0 src]$ source /opt/intel/composer_xe_2015/mkl/bin/mklvars.sh mic

[mic0 src]$ source /opt/intel/impi/5.0.3.048/mic/bin/mpivars.sh

[mic0 src]$ mpirun -n 2 ./helloworld_mixedmode_mic

Hello from thread 0 out of 4 from process 0 out of 2 on phi-mic0.hydra

Hello from thread 2 out of 4 from process 0 out of 2 on phi-mic0.hydra

Hello from thread 0 out of 4 from process 1 out of 2 on phi-mic0.hydra

Hello from thread 3 out of 4 from process 0 out of 2 on phi-mic0.hydra

Hello from thread 1 out of 4 from process 0 out of 2 on phi-mic0.hydra

Hello from thread 1 out of 4 from process 1 out of 2 on phi-mic0.hydra

Hello from thread 2 out of 4 from process 1 out of 2 on phi-mic0.hydra

Hello from thread 3 out of 4 from process 1 out of 2 on phi-mic0.hydra

MPI performance in native mode

• The MPI performance on the Xeon Phi is generally much

slower than you will get on the host

• Used the Intel MPI benchmarks to measure the MPI

performance on the host and Xeon Phi

• https://software.intel.com/en-us/articles/intel-mpi-benchmarks

• Compared point-to-point via PingPong and collectives via

MPI_Allreduce

PingPong Bandwidth

PingPong Latency

PingPong Latency

MPI_Allreduce

OpenMP performance/ thread affinity

• In native mode, we have 60 physical cores each running 4

hardware threads, so 240 threads in total

• To obtain good performance we need at least 2 threads

running on each core

• Often running 3 or 4 threads per core is best

• Where/how we place these threads is very important

• KMP_AFFINITY can be used to find out and control thread

distribution

Thread/process affinity
• We have 60 physical cores (PC), each running 4 virtual threads

• Various placement strategies possible
• Compact – preserves locality but some physical cores end up with lots of work

and some end up with none
• Scatter – destroys locality but if < 60 virtual threads used is fine
• Balanced – preserves locality and works for all thread counts

Compact

Scatter

Balanced

PC PCPC PC

0 1 2 3 4 5

0 4 2 31 5

0 1 4 52 3

threads

Affinity example with MPI/OpenMP

For 2 MPI processes each running 2 OpenMP threads:

export OMP_NUM_THREADS=2

mpirun -prepend-rank -genv LD_LIBRARY_PATH path_to_the_mic_libs \

–np 1 -env KMP_AFFINITY verbose,granularity=fine,proclist=[1,5],explicit \

-env OMP_NUM_THREADS ${OMP_NUM_THREADS} $CP2K_BIN/cp2k.psmp H2O-64.inp : \

-np 1 -env KMP_AFFINITY verbose,granularity=fine,proclist=[9,13],explicit \

-env OMP_NUM_THREADS ${OMP_NUM_THREADS} $CP2K_BIN/cp2k.psmp H2O-64.inp &> x

• For every MPI process you say where its threads will be placed

• With large numbers of processes this gets quite messy!

• The default placement is often ok

• Use export KMP_AFFINITY=verbose to check

Native mode: 2 Xeon Phi cards

• You can run your native code using several Xeon Phi cards

• Here you compile a native binary and then launch the job
on multiple cards from the host e.g.

[host ~]$ export I_MPI_MIC=enable

[host ~]$ export DAPL_DBG_TYPE=0

[host ~]$ mpiexec.hydra -host mic0 -np 2 /path_on_mic/test.mic : \

-host mic1 -np 2 /path_on_mic/test.mic

Hello from process 2 out off 4 on phi-mic1.hydra

Hello from process 3 out off 4 on phi-mic1.hydra

Hello from process 0 out off 4 on phi-mic0.hydra

Hello from process 1 out off 4 on phi-mic0.hydra

• MPI ranks are assigned in the order that cards are specified

• For an MPI/OpenMP code you’ll need to use –env to set
the number of threads on each card and
LD_LIBRARY_PATH

Symmetric mode: host & Xeon Phi(s)
• You can also use a combination of the host and Xeon Phi

• Build two binaries, one for the host and one for the Xeon Phi

• The MPI ranks are across host (0:nhost-1) and Xeon Phi
(nhost:total number of procs-1)

[host src]$ mpiicc helloworld_symmetric.c -o hello_sym.host

[host src]$ mpiicc -mmic helloworld_symmetric.c -o hello_sym.mic

[host ~]$ export I_MPI_MIC=enable

[host ~]$ export DAPL_DBG_TYPE=0

[host src]$ mpiexec.hydra -host localhost -np 2 ./hello_sym.host : \

-host mic0 -np 4 /home-hydra/h012/fiona/src/hello_sym.mic

Hello from process 0 out off 6 on phi.hydra

Hello from process 1 out off 6 on phi.hydra

Hello from process 2 out off 6 on phi-mic0.hydra

Hello from process 3 out off 6 on phi-mic0.hydra

Hello from process 4 out off 6 on phi-mic0.hydra

Hello from process 5 out off 6 on phi-mic0.hydra

Summary

• Native mode provides an easy way to get code running on
Xeon Phi – just add -mmic

• Not all codes are suitable

• You should now be able to compile + run in native mode

• Thread/task/process placement is important

• Have also discussed running on multiple Xeon Phi’s

