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• Parallelisation
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• Performance Considerations
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3 Basic Programming Models

Native mode

Offload execution

Symmetric execution
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Host

Main Memory

Native Mode: Xeon Phi only

• Host used for preparation work (e.g. compiling, 

data copy)

• User initiates run from host or can use host to 

connect to Xeon Phi via ssh

ssh

(PCIe)

Coprocessor
int main() {

do stuff();

}

int main() {

do stuff();

}
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Host

Main Memory

Coprocessor

Native Mode: Xeon Phi only

• Host used for preparation work (e.g. compiling, data copy)

• User initiates run from host or can use host to connect to 
Xeon Phi via ssh

• Programme runs on Xeon Phi from start to finish 

“as usual”

ssh

(PCIe)

int main() {

do stuff();

}
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Native Mode: Xeon Phi only

Pros:

• Requires minimal effort to “port” 

• Works well with ‘flat profile’ applications

• No memory copy required
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Native Mode: Xeon Phi only
Pros:

• Requires minimal effort to “port” 

• Works well with ‘flat profile’ applications

• No memory copy required

Cons:

• Poor performance on codes with large 

serial regions and ‘complex codes’

• Limited Xeon Phi memory
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Host

Main Memory

Offload Execution: Hotspot eliminator

• Application is initiated on host
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}
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#pragma offload
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…
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Host

Main Memory

• Application is initiated on host

• Embarrassingly parallel hotspots are offloaded to 

Xeon Phi

• Results of offload region are returned to host 
where execution continues

ssh
(PCIe)

Coprocessor
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…

}

do_stuff(){

…

}
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…
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}
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Offload Execution: Hotspot eliminator

Pros:

• Serial code handled by advanced 

CPU cores

• Embarrassingly parallel hotspots are 

executed efficiently on Xeon Phi

• More efficient use of (limited) Xeon 

Phi memory
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Offload Execution: Hotspot eliminator
Pros:

• Serial code handled by advanced CPU cores

• Embarrassingly parallel hotspots are executed 
efficiently on Xeon Phi

• More efficient use of (limited) Xeon Phi memory

Cons:

• Data must be copied to and from the 

Xeon Phi via (slow) PCIe Bus

• May lead to poor utilisation of 

CPU/XeonPhi (idle time)
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Host

Main Memory

Symmetric Execution: Phi-as-a-node

• Application is initiated on host but…

ssh
(PCIe)

Coprocessor
int main() {

…

do_stuff()

…

}

int main() {

…

do_stuff()

…

}

int main() {

…

do_stuff()

…

}

MPI_RANK=0…15 MPI_RANK=16…255
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Main Memory

• Application is initiated on host but…

• Runs across both CPU and Xeon Phi cores
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Host

Main Memory

• Application is initiated on host but…

• Runs across both CPU and Xeon Phi cores

• Effectively using Xeon Phi as just another node 
for MPI to use

ssh
(PCIe)

Coprocessor
int main() {

…

do_stuff()

…

}

int main() {

…

do_stuff()

…

}

int main() {

…

do_stuff()

…

}

MPI_RANK=0…15 MPI_RANK=16…255

Symmetric Execution: Phi-as-a-node
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Pros:

• Promise of full hardware utilisation

• No need for offloading pragmas and 

memory copies

Symmetric Execution: Phi-as-a-node
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Symmetric Execution: Phi-as-a-node

Pros:

• Serial code handled by advanced CPU cores

• Embarrassingly parallel hotspots are 
executed efficiently on Xeon Phi

• More efficient use of (limited) Xeon Phi 
memory

Cons:

• Tricky load-balancing 

• Code is rarely optimal for both CPU 

and Xeon Phi
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OpenMP

and / or
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• MPI runs only on hosts

• MPI processes offload to 

Xeon Phi

• OpenMP in MPI processes

• OpenMP in offload regions

MPI+OpenMP with Offload

Image from Colfax training material
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• MPI processes on host

• MPI processes (native) on 

Xeon Phi

• No OpenMP

Symmetric Pure MPI

Image from Colfax training material
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• MPI processes on host

• MPI processes (native) on 

Xeon Phi

• All MPI processes use 

OpenMP multithreading 

Symmetric hybrid MPI+OpenMP

Image from Colfax training material
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• What is your goal?

• What is your system?

• What is your application?

• Generally OpenMP faster than MPI on Xeon Phi

• Poor performance of MPI on Xeon Phi 

• Less memory (especially important on Xeon Phi)

• Worth checking affinity settings (more later)

What is best?
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Compilers
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In a word: Intel

Compilers

• Intel C Compiler

• Intel C++ Compiler

• Intel Fortran Compiler
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In two words:

Tools

Intel Allinea&
(but mainly Intel)
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Tools
Intel AllineaParallel Studio XE

• Intel C, C++ and Fortran compilers (MIC-capable)

• Intel Math Kernel Library (MKL)

• Intel MPI Library (only in Cluster Edition)

• Intel Trace Analyzer and Collector / ITAC (MPI 

profiler) 

• Intel VTune Amplifier XE (multi-threaded profiler)

• Intel Inspector XE (memory and threading debugging) 

• Intel Threading Building Blocks / TBB (threading 

library) 

• Intel Performance Primitives / IPP (media and data)

• Intel Advisor XE (guided parallelism design) 

• Map (lightweight 

profiler)

• DDT (debug)

• Forge (unified UI 

for DDT & Map)
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RuntimeTools
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RuntimeTools

(Intel Manycore Platform Software Stack)

MPSS

Environment 
Variables

Linux

Commands
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MPSS

• micnativeloadex

• micinfo

• miccheck

• micsmc (GUI)

• micrasd (root)

…

For more details: 

http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/xeon-phi-
software-configuration-users-guide.pdf

https://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-lin/GUID-
E1EC94AE-A13D-463E-B3C3-6D7A7205F5A1.htm

Environment 
Variables

• MKL_MIC_ENABLE

• MIC_ENV_PREFIX

• MIC_LD_LIBRARY_PATH

• I_MPI_MIC

• I_MPI_MIC_POSTFIX

• OFFLOAD_REPORT

• KMP_AFFINITY

• KMP_BLOCKTIME

• MIC_USE_2MB_BUFFERS

…

Linux

Commands

• lspci | grep Phi

• cat /etc/hosts | grep mic

• cat /proc/cpuinfo | grep 

proc | tail -n 3

…

RuntimeTools
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Considerations
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Execution mode

Vectorisation

Alignment

Affinity

Application Design

Four things to consider first:
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Mode chosen should depend on the 
application and system configuration 

(as discussed previously)

Mode of execution

• Native

• Offload

• Symmetric
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• Xeon Phi performance is greatly 
dependant on vector units.

• Intel Xeon CPUs also use (smaller) vector 
units → Code optimised for Intel Xeon will 

run faster on Intel Xeon Phi

• KNL (next generation Xeon Phi) will also 
use 512-AVX vector units → Code 

optimised for Intel Xeon Phi KNC will also 
run faster on Intel Xeon Phi KNL 

*(KNC-KNL not binary compatible)

Vectorisation
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• Xeon Phi performance is greatly 
dependant on vector units.

• Intel Xeon CPUs also use (smaller) vector 
units → Code optimised for Intel Xeon will 

run faster on Intel Xeon Phi
• KNL (next generation Xeon Phi) will also 

use 512-AVX vector units → Code 
optimised for Intel Xeon Phi KNC will 
also run faster on Intel Xeon Phi KNL 

*(KNC-KNL not binary compatible)

Vectorisation
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• “Loop is vectorised” != faster

• Data alignment is critical for 

vectorisation to be beneficial 

• Remember to not only align 

data, but also to tell the compiler 

that data is aligned at loop. 

Data Alignment
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• “Loop is vectorised” != faster

• Data alignment is critical for 

vectorisation to be beneficial 

• Remember to not only align data, 
but also to tell the compiler that 

data is aligned at loop. 

Data Alignment
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• All data moves over high-speed ring 

interconnect

• Affinity critical for good performance 

• Default settings are not always optimal

• In offload mode, may accidentally use 
poor settings. 

e.g. 240 threads competing for the use of 30 
cores, while 30 other cores are idle.

Affinity 
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• All data moves over high-speed ring 

interconnect

• Affinity critical for good performance 

• Default settings are not always optimal

• In offload mode, may accidentally use 
poor settings. 

e.g. 240 threads competing for the use of 30 

cores, while 30 other cores are idle.

Affinity 
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• Design >> Optimisation

• Consider all levels of parallelism available 

and adapt your algorithm to exploit as 

many and as much as possible

Application Design
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Vector Unit

Thread

Performance Considerations

Levels of parallelism
Machine

Node

Numa Region

Core
Co-processor

Vector Unit
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Vector UnitVector UnitVector Unit

ThreadThreadThread

Vector Unit
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Vector UnitVector UnitVector Unit

ThreadThreadThread
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Vector UnitVector UnitVector Unit

ThreadThreadThread
Vector UnitVector UnitVector UnitVector UnitVector Unit

Co-processor

CoreCoreCoreCore

Numa Region

NodeNodeNode

Performance Considerations

Levels of parallelism
Machine

Node

Numa Region

Core
Co-processor

Vector Unit
Vector Unit

Thread
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• Programming models

• Native, Offload, Symmetric - what’s best for you.

• Parallelisation

• MPI, OpenMP -> OpenMP better on Xeon Phi

• Many ways to mix and match

• Compilers and Tools

• Use Intel compilers (C, C++, Fortran)

• Intel and Allinea tools: VTune, Map, etc.

• Wide variety of runtime tools and environment 
variables: micinfo, KMP_AFFINITY

• Performance Considerations

• Programming model

• Vectorisation - needed to exploit Xeon Phi compute

• Data alignment - needed to make vectorisation useful

• Thread/process affinity - can be critical for performance

• Application design: Consider levels of parallelism

Summary
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Thank You!


