
XEON PHI BASICS

Adrian Jackson
adrianj@epcc.ed.ac.uk

@adrianjhpc



Xeon Phi Basics

Reusing this material

This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the material 

under the following terms: You must give appropriate credit, provide a link to the license and 

indicate if changes were made. If you adapt or build on the material you must distribute your work 

under the same license as the original.

Note that presentations may contains images owned by others. Please seek their permission 

before reusing these images.



Xeon Phi Basics

LESSON PLAN

• Programming models

• Parallelisation

• Compilers and Tools

• Performance Considerations



Xeon Phi Basics

Programming models



Xeon Phi BasicsProgramming models

+

Host

Main Memory

Coprocessor



Xeon Phi BasicsProgramming models

+

Host

Main Memory

Coprocessor

3 Basic Programming Models

Native mode

Offload execution

Symmetric execution



Xeon Phi BasicsProgramming models

Host

Main Memory

Native Mode: Xeon Phi only

• Host used for preparation work (e.g. compiling, 

data copy)

• User initiates run from host or can use host to 

connect to Xeon Phi via ssh

ssh

(PCIe)

Coprocessor
int main() {

do stuff();

}

int main() {

do stuff();

}



Xeon Phi BasicsProgramming models

Host

Main Memory

Coprocessor

Native Mode: Xeon Phi only

• Host used for preparation work (e.g. compiling, data copy)

• User initiates run from host or can use host to connect to 
Xeon Phi via ssh

• Programme runs on Xeon Phi from start to finish 

“as usual”

ssh

(PCIe)

int main() {

do stuff();

}



Xeon Phi BasicsProgramming models

Native Mode: Xeon Phi only

Pros:

• Requires minimal effort to “port” 

• Works well with ‘flat profile’ applications

• No memory copy required



Xeon Phi BasicsProgramming models

Native Mode: Xeon Phi only
Pros:

• Requires minimal effort to “port” 

• Works well with ‘flat profile’ applications

• No memory copy required

Cons:

• Poor performance on codes with large 

serial regions and ‘complex codes’

• Limited Xeon Phi memory



Xeon Phi BasicsProgramming models

Host

Main Memory

Offload Execution: Hotspot eliminator

• Application is initiated on host

ssh
(PCIe)

Coprocessor
do_stuff(){

…

}

do_stuff(){

…

}

int main() {

…

#pragma offload

do_stuff()

…

}

int main() {

…

#pragma offload

do_stuff()

…

}



Xeon Phi BasicsProgramming models

Host

Main Memory

• Application is initiated on host

• Embarrassingly parallel hotspots are offloaded to 
Xeon Phi

ssh
(PCIe)

Coprocessor
do_stuff(){

…

}

int main() {

…

#pragma offload

do_stuff()

…

}

int main() {

…

#pragma offload

do_stuff()

…

}

Offload Execution: Hotspot eliminator



Xeon Phi BasicsProgramming models

Host

Main Memory

• Application is initiated on host

• Embarrassingly parallel hotspots are offloaded to 

Xeon Phi

• Results of offload region are returned to host 
where execution continues

ssh
(PCIe)

Coprocessor
do_stuff(){

…

}

do_stuff(){

…

}

int main() {

…

#pragma offload

do_stuff()

…

}

int main() {

…

#pragma offload

do_stuff()

…

}

Offload Execution: Hotspot eliminator



Xeon Phi BasicsProgramming models

Offload Execution: Hotspot eliminator

Pros:

• Serial code handled by advanced 

CPU cores

• Embarrassingly parallel hotspots are 

executed efficiently on Xeon Phi

• More efficient use of (limited) Xeon 

Phi memory



Xeon Phi BasicsProgramming models

Offload Execution: Hotspot eliminator
Pros:

• Serial code handled by advanced CPU cores

• Embarrassingly parallel hotspots are executed 
efficiently on Xeon Phi

• More efficient use of (limited) Xeon Phi memory

Cons:

• Data must be copied to and from the 

Xeon Phi via (slow) PCIe Bus

• May lead to poor utilisation of 

CPU/XeonPhi (idle time)



Xeon Phi BasicsProgramming models

Host

Main Memory

Symmetric Execution: Phi-as-a-node

• Application is initiated on host but…

ssh
(PCIe)

Coprocessor
int main() {

…

do_stuff()

…

}

int main() {

…

do_stuff()

…

}

int main() {

…

do_stuff()

…

}

MPI_RANK=0…15 MPI_RANK=16…255



Xeon Phi BasicsProgramming models

Host

Main Memory

• Application is initiated on host but…

• Runs across both CPU and Xeon Phi cores

ssh
(PCIe)

Coprocessor
int main() {

…

do_stuff()

…

}

int main() {

…

do_stuff()

…

}

int main() {

…

do_stuff()

…

}

MPI_RANK=0…15 MPI_RANK=16…255

Symmetric Execution: Phi-as-a-node



Xeon Phi BasicsProgramming models

Host

Main Memory

• Application is initiated on host but…

• Runs across both CPU and Xeon Phi cores

• Effectively using Xeon Phi as just another node 
for MPI to use

ssh
(PCIe)

Coprocessor
int main() {

…

do_stuff()

…

}

int main() {

…

do_stuff()

…

}

int main() {

…

do_stuff()

…

}

MPI_RANK=0…15 MPI_RANK=16…255

Symmetric Execution: Phi-as-a-node



Xeon Phi BasicsProgramming models

Pros:

• Promise of full hardware utilisation

• No need for offloading pragmas and 

memory copies

Symmetric Execution: Phi-as-a-node



Xeon Phi BasicsProgramming models

Symmetric Execution: Phi-as-a-node

Pros:

• Serial code handled by advanced CPU cores

• Embarrassingly parallel hotspots are 
executed efficiently on Xeon Phi

• More efficient use of (limited) Xeon Phi 
memory

Cons:

• Tricky load-balancing 

• Code is rarely optimal for both CPU 

and Xeon Phi



Xeon Phi Basics

Parallelisation



Xeon Phi BasicsParallelisation 

MPI

OpenMP

and / or



Xeon Phi BasicsParallelisation 

• MPI runs only on hosts

• MPI processes offload to 

Xeon Phi

• OpenMP in MPI processes

• OpenMP in offload regions

MPI+OpenMP with Offload

Image from Colfax training material



Xeon Phi BasicsParallelisation 

• MPI processes on host

• MPI processes (native) on 

Xeon Phi

• No OpenMP

Symmetric Pure MPI

Image from Colfax training material



Xeon Phi BasicsParallelisation 

• MPI processes on host

• MPI processes (native) on 

Xeon Phi

• All MPI processes use 

OpenMP multithreading 

Symmetric hybrid MPI+OpenMP

Image from Colfax training material



Xeon Phi BasicsParallelisation 

• What is your goal?

• What is your system?

• What is your application?

• Generally OpenMP faster than MPI on Xeon Phi

• Poor performance of MPI on Xeon Phi 

• Less memory (especially important on Xeon Phi)

• Worth checking affinity settings (more later)

What is best?



Xeon Phi Basics

Compilers & Tools



Xeon Phi BasicsCompilers & Tools

In a word: Intel

Compilers



Xeon Phi BasicsCompilers & Tools

In a word: Intel

Compilers

• Intel C Compiler

• Intel C++ Compiler

• Intel Fortran Compiler



Xeon Phi BasicsCompilers & Tools

In two words:

Tools

Intel Allinea&
(but mainly Intel)



Xeon Phi BasicsCompilers & Tools

Tools
Intel AllineaParallel Studio XE

• Intel C, C++ and Fortran compilers (MIC-capable)

• Intel Math Kernel Library (MKL)

• Intel MPI Library (only in Cluster Edition)

• Intel Trace Analyzer and Collector / ITAC (MPI 

profiler) 

• Intel VTune Amplifier XE (multi-threaded profiler)

• Intel Inspector XE (memory and threading debugging) 

• Intel Threading Building Blocks / TBB (threading 

library) 

• Intel Performance Primitives / IPP (media and data)

• Intel Advisor XE (guided parallelism design) 

• Map (lightweight 

profiler)

• DDT (debug)

• Forge (unified UI 

for DDT & Map)



Xeon Phi BasicsCompilers & Tools

RuntimeTools



Xeon Phi BasicsCompilers & Tools

RuntimeTools

(Intel Manycore Platform Software Stack)

MPSS

Environment 
Variables

Linux

Commands



Xeon Phi BasicsCompilers & Tools

MPSS

• micnativeloadex

• micinfo

• miccheck

• micsmc (GUI)

• micrasd (root)

…

For more details: 

http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/xeon-phi-
software-configuration-users-guide.pdf

https://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-lin/GUID-
E1EC94AE-A13D-463E-B3C3-6D7A7205F5A1.htm

Environment 
Variables

• MKL_MIC_ENABLE

• MIC_ENV_PREFIX

• MIC_LD_LIBRARY_PATH

• I_MPI_MIC

• I_MPI_MIC_POSTFIX

• OFFLOAD_REPORT

• KMP_AFFINITY

• KMP_BLOCKTIME

• MIC_USE_2MB_BUFFERS

…

Linux

Commands

• lspci | grep Phi

• cat /etc/hosts | grep mic

• cat /proc/cpuinfo | grep 

proc | tail -n 3

…

RuntimeTools



Xeon Phi Basics

Performance 

Considerations



Xeon Phi BasicsPerformance Considerations

Execution mode

Vectorisation

Alignment

Affinity

Application Design

Four things to consider first:



Xeon Phi BasicsPerformance Considerations

Mode chosen should depend on the 
application and system configuration 

(as discussed previously)

Mode of execution

• Native

• Offload

• Symmetric



Xeon Phi BasicsPerformance Considerations

• Xeon Phi performance is greatly 
dependant on vector units.

• Intel Xeon CPUs also use (smaller) vector 
units → Code optimised for Intel Xeon will 

run faster on Intel Xeon Phi

• KNL (next generation Xeon Phi) will also 
use 512-AVX vector units → Code 

optimised for Intel Xeon Phi KNC will also 
run faster on Intel Xeon Phi KNL 

*(KNC-KNL not binary compatible)

Vectorisation



Xeon Phi BasicsPerformance Considerations

• Xeon Phi performance is greatly 
dependant on vector units.

• Intel Xeon CPUs also use (smaller) 
vector units → Code optimised for Intel 
Xeon will run faster on Intel Xeon Phi

• KNL (next generation Xeon Phi) will also 
use 512-AVX vector units → Code 

optimised for Intel Xeon Phi KNC will also 
run faster on Intel Xeon Phi KNL 

*(KNC-KNL not binary compatible)

Vectorisation



Xeon Phi BasicsPerformance Considerations

• Xeon Phi performance is greatly 
dependant on vector units.

• Intel Xeon CPUs also use (smaller) vector 
units → Code optimised for Intel Xeon will 

run faster on Intel Xeon Phi
• KNL (next generation Xeon Phi) will also 

use 512-AVX vector units → Code 
optimised for Intel Xeon Phi KNC will 
also run faster on Intel Xeon Phi KNL 

*(KNC-KNL not binary compatible)

Vectorisation



Xeon Phi BasicsPerformance Considerations

• “Loop is vectorised” != faster

• Data alignment is critical for 

vectorisation to be beneficial 

• Remember to not only align 

data, but also to tell the compiler 

that data is aligned at loop. 

Data Alignment



Xeon Phi BasicsPerformance Considerations

• “Loop is vectorised” != faster

• Data alignment is critical for 

vectorisation to be beneficial 

• Remember to not only align 

data, but also to tell the compiler 

that data is aligned at loop. 

Data Alignment



Xeon Phi BasicsPerformance Considerations

• “Loop is vectorised” != faster

• Data alignment is critical for 

vectorisation to be beneficial 

• Remember to not only align data, 
but also to tell the compiler that 

data is aligned at loop. 

Data Alignment



Xeon Phi BasicsPerformance Considerations

• All data moves over high-speed ring 

interconnect

• Affinity critical for good performance 

• Default settings are not always optimal

• In offload mode, may accidentally use 
poor settings. 

e.g. 240 threads competing for the use of 30 
cores, while 30 other cores are idle.

Affinity 



Xeon Phi BasicsPerformance Considerations

• All data moves over high-speed ring 

interconnect

• Affinity critical for good performance 

• Default settings are not always optimal

• In offload mode, may accidentally use 
poor settings. 

e.g. 240 threads competing for the use of 30 
cores, while 30 other cores are idle.

Affinity 



Xeon Phi BasicsPerformance Considerations

• All data moves over high-speed ring 

interconnect

• Affinity critical for good performance 

• Default settings are not always optimal

• In offload mode, may accidentally use 

poor settings. 

e.g. 240 threads competing for the use of 30 

cores, while 30 other cores are idle.

Affinity 



Xeon Phi BasicsPerformance Considerations

• All data moves over high-speed ring 

interconnect

• Affinity critical for good performance 

• Default settings are not always optimal

• In offload mode, may accidentally use 
poor settings. 

e.g. 240 threads competing for the use of 30 

cores, while 30 other cores are idle.

Affinity 



Xeon Phi BasicsPerformance Considerations

• Design >> Optimisation

• Consider all levels of parallelism available 

and adapt your algorithm to exploit as 

many and as much as possible

Application Design



Xeon Phi Basics

Vector Unit

Thread

Performance Considerations

Levels of parallelism
Machine

Node

Numa Region

Core
Co-processor

Vector Unit



Xeon Phi Basics

Vector Unit

Thread

NodeNodeNode

Performance Considerations

Levels of parallelism
Machine

Node

Numa Region

Core
Co-processor

Vector Unit



Xeon Phi Basics

Vector Unit

Thread

Numa Region

NodeNodeNode

Performance Considerations

Levels of parallelism
Machine

Node

Numa Region

Core
Co-processor

Vector Unit



Xeon Phi Basics

Vector Unit

Thread

CoreCoreCoreCore

Numa Region

NodeNodeNode

Performance Considerations

Levels of parallelism
Machine

Node

Numa Region

Core
Co-processor

Vector Unit



Xeon Phi Basics

ThreadThreadThread

Vector Unit

Thread

CoreCoreCoreCore

Numa Region

NodeNodeNode

Performance Considerations

Levels of parallelism
Machine

Node

Numa Region

Core
Co-processor

Vector Unit



Xeon Phi Basics

Vector UnitVector UnitVector Unit

ThreadThreadThread

Vector Unit

Thread

CoreCoreCoreCore

Numa Region

NodeNodeNode

Performance Considerations

Levels of parallelism
Machine

Node

Numa Region

Core
Co-processor

Vector Unit



Xeon Phi Basics

Vector UnitVector UnitVector Unit

ThreadThreadThread

Vector Unit

Thread

Co-processor

CoreCoreCoreCore

Numa Region

NodeNodeNode

Performance Considerations

Levels of parallelism
Machine

Node

Numa Region

Core
Co-processor

Vector Unit



Xeon Phi Basics

Vector UnitVector UnitVector Unit

ThreadThreadThread

Vector Unit

Thread
Vector UnitVector UnitVector UnitVector UnitVector Unit

Co-processor

CoreCoreCoreCore

Numa Region

NodeNodeNode

Performance Considerations

Levels of parallelism
Machine

Node

Numa Region

Core
Co-processor

Vector Unit



Xeon Phi Basics

Vector UnitVector UnitVector Unit

ThreadThreadThread
Vector UnitVector UnitVector UnitVector UnitVector Unit

Co-processor

CoreCoreCoreCore

Numa Region

NodeNodeNode

Performance Considerations

Levels of parallelism
Machine

Node

Numa Region

Core
Co-processor

Vector Unit
Vector Unit

Thread



Xeon Phi Basics

Summary



Xeon Phi Basics

• Programming models

• Native, Offload, Symmetric - what’s best for you.

• Parallelisation

• MPI, OpenMP -> OpenMP better on Xeon Phi

• Many ways to mix and match

• Compilers and Tools

• Use Intel compilers (C, C++, Fortran)

• Intel and Allinea tools: VTune, Map, etc.

• Wide variety of runtime tools and environment 
variables: micinfo, KMP_AFFINITY

• Performance Considerations

• Programming model

• Vectorisation - needed to exploit Xeon Phi compute

• Data alignment - needed to make vectorisation useful

• Thread/process affinity - can be critical for performance

• Application design: Consider levels of parallelism

Summary



Xeon Phi Basics

• Programming models

• Native, Offload, Symmetric - what’s best for you.

• Parallelisation

• MPI, OpenMP -> OpenMP better on Xeon Phi

• Many ways to mix and match

• Compilers and Tools

• Use Intel compilers (C, C++, Fortran)

• Intel and Allinea tools: VTune, Map, etc.

• Wide variety of runtime tools and environment 
variables: micinfo, KMP_AFFINITY

• Performance Considerations

• Programming model

• Vectorisation - needed to exploit Xeon Phi compute

• Data alignment - needed to make vectorisation useful

• Thread/process affinity - can be critical for performance

• Application design: Consider levels of parallelism

Summary



Xeon Phi Basics

• Programming models

• Native, Offload, Symmetric - what’s best for you.

• Parallelisation

• MPI, OpenMP -> OpenMP better on Xeon Phi

• Many ways to mix and match

• Compilers and Tools

• Use Intel compilers (C, C++, Fortran)

• Intel and Allinea tools: VTune, Map, etc.

• Wide variety of runtime tools and environment 
variables: micinfo, KMP_AFFINITY

• Performance Considerations

• Programming model

• Vectorisation - needed to exploit Xeon Phi compute

• Data alignment - needed to make vectorisation useful

• Thread/process affinity - can be critical for performance

• Application design: Consider levels of parallelism

Summary



Xeon Phi Basics

• Programming models

• Native, Offload, Symmetric - what’s best for you.

• Parallelisation

• MPI, OpenMP -> OpenMP better on Xeon Phi

• Many ways to mix and match

• Compilers and Tools

• Use Intel compilers (C, C++, Fortran)

• Intel and Allinea tools: VTune, Map, etc.

• Wide variety of runtime tools and environment 
variables: micinfo, KMP_AFFINITY

• Performance Considerations

• Programming model

• Vectorisation - needed to exploit Xeon Phi compute

• Data alignment - needed to make vectorisation useful

• Thread/process affinity - can be critical for performance

• Application design: Consider levels of parallelism

Summary



Xeon Phi Basics

Thank You!


