NATURAL
ENVIRONMENT E P S R‘
RESEARCH COUNCIL

Threaded programming

Introduction to performance optimisation

Slides contributed by Cray and EPCC

epcc| @

-
Why"?

Large computer simulations are becoming common in
many scientific disciplines.
These often take a significant amount of time to run.
Sometimes they take too long.
There are three things that can be done
Change the science (compromise the research)

Change the computer (spend more money)
Change the program (this is performance optimisation)

epce

-
What?

There are usually many different ways you can write a
program and still obtain the correct results.

Some run faster than others.

Interactions with the computer hardware.

Interactions with other software.
Performance optimisation is the process of making an
existing working computer program run faster in a

particular Hardware and Software environment.

Converting a sequential program to run in parallel is an example of
optimisation under this definition!

epce

-
When?

Performance optimisation can take large amounts of
development time.

Some optimisations improve program speed at the cost of
making the program harder to understand (increasing the
cost of future changes)

Some optimisations improve program speed at the cost of

making the program more specialised and less general
purpose.

It is always important to evaluate the relative costs and
benefits when optimising a program

This requires the ability to estimate potential gains in advance

epcc

-
How?

- Performance optimisation usually follows a cycle:

Measuring performance

It is not enough to just measure overall speed
You need to know where the time is going.

There are tools to help you do this
They are called profiling tools.

They give information about:

Which sections of code are taking the time
Sometimes line by line but usually only subroutines.

Sometimes the type of operation
memory access
floating point calculations
file access

Make sure you understand how variable your results are
Are the results down to my changes or just random variation?

epce

Input dependence

Many codes perform differently with different input data.

Use multiple sets of input data when measuring
performance.

Make sure these are representative of the problems
where you want the code to run quickly.

epce

S
N~y %
M
@)
<

Only optimise important
sections

lts only worth working on parts of the code that take a lot
of time.

Large speed-up of unimportant sections have little
iImpact on the overall picture.
Amdahl’s law is this concept applied to parallel processing.
Same insight applies to other forms of optimisation.

epcc

40%
90%

40%

I
What is profiling?

Analysing your code to find out the proportion of execution
time spent in different routines.

Essential to know this if we are going to target
optimisation.

No point optimising routines that don’t significantly
contribute to the overall execution time.

can just make your code less readable/maintainable

epce

-
Code profiling

Code profiling is the first step for anyone interested in
performance optimisation
Profiling works by instrumenting code at compile time
Thus it's (usually) controlled by compiler flags
Can reduce performance
Standard profiles return data on:

Number of function calls
Amount of time spent in sections of code

Also tools that will return hardware specific data

Cache misses, TLB misses, cache re-use, flop rate, etc...
Useful for in-depth performance optimisation

epcc

Analysis and Profiling

Sampling and tracing

Many profilers work by sampling the program counter at
regular intervals (normally 100 times per second).

low overhead, little effect on execution time

Builds a statistical picture of which routines the code is
spending time in.
if the run time is too small (< ~10 seconds) there aren’t enough
samples for good statistics
Tracing can get more detailed information by recording
some data (e.g. time stamp) at entry/exit to functions
higher overhead, more effect on runtime
unrestrained use can result in huge output files

epcc

Standard Unix profilers

Standard Unix profilers are prof and gprof
Many other profiling tools use same formats
Usual compiler flags are -p and -pg:

ftn -p mycode.F90 -o myprog for prof
cc -pg mycode.c -0 myprog for gprof

When code is run it produces instrumentation log

mon . out for prof
gmon . out for gprof

Then run prof/gprof on your executable program
eg. gprof myprog (not gprof gmon.out)

epce

Analysis and Profiling

Standard profilers

prof myprog reads mon.out and produces this:

%$Time Seconds Cumsecs #Calls msec/call Name

32.4 0.71 0.71 14 50.7 relax
28.3 0.62 1.33 14 44 .3 resid

11.4 0.25 1.58 3 83. __f90 _close
5.9 0.13 1.71 1629419 0.0001 mcount

5.0 0.11 1.82 339044 0.0003 _ f90 slr i4
5.0 0.11 1.93 167045 0.0007

__inrange single

2.7 0.06 1.99 507 0.12 _read

2.7 0.06 2.05 1 60. MAIN

epce

Analysis and Profiling

-
Standard profilers

gprof myprog reads gmon.out and produces something
very similar

gprof also produces a program calltree sorted by inclusive
times

Both profilers list all routines, including obscure system ones

Of note: mcount(), mcount(), moncontrol(), moncontrol()
monitor() and monitor() are all overheads of the profiling
implementation itself

_mcount() is called every time your code calls a function; if it's high in
the profile, it can indicate high function-call overhead

gprof assumes calls to a routine from different parents take the same
amount of time — may not be true

epce

Analysis and Profiling

-
The Golden Rules of profiling

- Profile your code
- The compiler/runtime will NOT do all the optimisation for you.

Profile your code yourself
- Don't believe what anyone tells you. They're wrong.

Profile on the hardware you want to run on
- Don't profile on your laptop if you plan to run on ARCHER.

Profile your code running the full-sized problem
- The profile will almost certainly be qualitatively different for a test case.

Keep profiling your code as you optimise
- Concentrate your efforts on the thing that slows your code down.
- This will change as you optimise.
- So keep on profiling.

epcc

e
Theory

Optimisation is an experimental process.
You propose reasons why a code section is slow.
Make corresponding changes.

The results may surprise you
Need to revise the theory

Never “optimise” without measuring the impact.

epcc

-
Exit ?

It is important to know when to stop.

Each time you propose a code change consider:

The likely improvement
Code profile and Amdahl's law helps here.

Take account of how long much use you expect for the optimised code.
Single use programs are rarely worth optimising.

The likely cost
Programming/debugging time.
Delay to starting simulation
“Damage” to the program

epce

e
Changing code

Many proposed changes will turn out not be useful.

You may have to undo your changes.
At the very least keep old versions
Better to use revision control software.

Always check the results are still correct !
No point measuring performance if the results are wrong
A good test framework will help a lot

epcc

I
Damaging code

Performance changes can damage other desirable
aspects of the code.

Loss of encapsulation.

Loss of clarity

Loss of flexibility

Think about down-side of changes.

Look for alternative changes with same performance
benefit but less damage.

epce

e
Experimental frameworks

Like any experiment, you need to keep good records.

You will be generating large numbers of different versions of the
code.
You need to know exactly what the different version were.
How you compiled them.
Did they get the correct answer.
How did they perform.
You may need to be able to re-run or reproduce your experiments
You discover a bug
A new compiler is released
A new hardware environment becomes available.
Etc.

epcc

Making things easier

Keep everything under version control (including results)

Script your tests so they are easy to run and give a clear
yes/no answer.

Write timing data into separate log-files in easily machine
readable format.

Keep notes.

epce

Architecture trends

Optimisation is the process of tuning a code to run faster
in a particular Hardware and Software environment.

The hardware environment consists of many different
resources

FPU

Cache

Memory

/O

Any of these resources could be the limiting factor for
code performance
Which one depends on the application

epcc

CPU resources

In the early days of computing memory accesses were
essentially free.

Optimisation consisted of reducing the instruction count.

This is no longer the case, and is getting worse

CPU performance increases at approx. 80% per year (though
recently this has been due to increasing core count rather than
clock speed)

memory speed increases at approx. 7% per year
Most HPC codes/systems are memory bandwidth limited.

epce

Types of optimisation

/\ Algorithm
Parallelism

Data structures

~ Code structure

Library calls

Compiler flags
4paCt > N
‘ EepPCC| &

Difficulty

Compiler flags

Easiest thing to change are the compiler flags

Most compilers will have good optimisation by default.
Some compiler optimisations are not always beneficial and need to
be requested explicitly.

Some need additional guidance from user (e.g. inter-file in-lining)

Some break language standards and need to be requested
explicitly
E.g. a/2 -> a*0.5 is contrary to Fortran standard but is usually safe.
Usually worthwhile to read compiler manual pages before optimising.

epcc

-
Library calls

The easiest way to make a big impact on code
performance is to re-use existing optimised code.

Libraries represent large amount of development effort
Somebody else has put in the effort so you don’t have to,

Code libraries exist for commonly used functionality (e.g.

linear algebra, FFTs etc.).

Often possible to access highly optimised versions of these
libraries.

Even if the application code does not use a standard library it is
often easy to re-write to use the standard calls.

epcc

e
Algorithm

The biggest performance increases typically require a
change to the underlying algorithm.

Consider changing an O(N) sort algorithm to a O(log(N)) algorithm.
This is a lot of work as the relevant code section usually needs a
complete re-write.

A warning

The complexity of an algorithm O(N), O(log(N)), O(N log(N)) etc. is
related to number of operations and is not always a reliable
indication of performance.

Pre-factor may make a “worse” algorithm perform better for the value of
N of interest.

The “worse” algorithms may have much better cache re-use

epce

Code structure

Most optimisations involve changes to code structure
Loop unrolling
Loop fusion
routine in-lining.
Often overlap with optimisations attempted by the compiler.

Often better to help the compiler to do this than perform change by
hand.

Easier to implement than data changes as more localised.

Performance impact is often also smaller unless the code fragment is a
major time consumer.

Performance improvement often at the expense of code
maintainability.
Try to keep the unoptimised version up to date as well.

epce

-
Helping the compiler

Unless we write assembly code, we are always using a
compiler.
Modern compilers are (quite) good at optimisation
memory optimisations are an exception
Usually much better to get the compiler to do the
optimisation.
avoids machine-specific coding
compilers break codes much less often than humans
Even modifying code can be thought of as “helping the
compiler”.

epcc

Compiler flags

Typical compiler has hundreds of flags/options.
most are never used

many are not related to optimisation
Most compilers have flags for different levels of general
optimisation.

-01, -02, -03,....
When first porting code, switch optimisation off.

only when you are satisfied that the code works, turn optimisation
on, and test again.

but don’ t forget to use them!

also don’ t forget to turn off debugging, bounds checking and
profiling flags...

epce

Compiler flags (cont.)

Note that highest levels of optimisation may
break your code.
give different answers, by bending standards.
make your code go slower.

Always read documentation carefully.

Isolate routines and flags which cause the problem.
binary chop
one routine per file may help

epcc

Code modification

When flags and hints don’ t solve the problem, we will have to
resort to code modification.

Be aware that this may
introduce bugs.
make the code harder to read/maintain.
only be effective on certain architectures and compiler versions.

Try to think about
what optimisation the compiler is failing to do
What additional information can be provided to compiler
how can rewriting help

epcc

Locals and globals

Compiler analysis is more effective with local variables

Has to make worst case assumptions about global
variables

Globals could be modified by any called procedure.
Use local variables where possible

Automatic variables are stack allocated: allocation is
essentially free.

In C, use file scope globals in preference to externals

epce

Conditionals

Even with sophisticated branch prediction hardware,
branches are bad for performance.

Try to avoid branches in innermost loops.
if you can’ t eliminate them, at least try to get them out of the critical

loops.
if (n .eq. 0) then
do 1=1.,k do i=1,k
if (n .eq. 0) then a(i) = b(i) + ¢
a(i) = b(i) + c end do
else — else
a(i) = 0. do i=1,k
endif Sl o @
ZHE E2 end do

endif

epcc

R
Data types

Performance can be affected by choice of data types

often a difference between 32-bit and 64-bit arithmetic (integer and
floating point).

complicated by trade-offs with memory usage and cache hit rates

Avoid unnecessary type conversions
e.g. int to long, float to double
N.B. some type conversions are implicit

However sometimes better than the alternative e.g.
Use DP reduction variable rather than increase array precision.

epcc

T
CSE

Compilers are generally good at Common Subexpression
Elimination.

A couple of cases where they might have trouble:

d

Different order of operands -

a + c
a+ b + c

Q.

a + func(c)
b + func(c)

epcc

Function calls

Register use

Most compilers make a reasonable job of register
allocation.

But only limited number available.

Can have problems in some cases:
loops with large numbers of temporary variables
such loops may be produced by inlining or unrolling
array elements with complex index expressions

can help compiler by introducing explicit scalar temporaries,
most compilers will use a register for an explicit scalar in
preference to an implicit CSE.

epce

for (i=0;i<n;i++) {
b[i] += a[c[i]]~’
c[i+l] = 2*i;

tmp = c[0];

for (i=0;i<n;i++) {
b[i] += a[tmp];
tmp = 2*i;
c[i+l] = tmp;

epCcc

-
Spilling

If compiler runs out of registers it will generate spill code.
store a value and then reload it later on

Examine your source code and count how many loads/
stores are required

Compare with assembly code

May need to distribute loops

epcc

Loop unrolling

Loop unrolling and software pipelining are two of the most
important optimisations for scientific codes on modern

RISC processors.
Compilers generally good at this.

If compiler fails, usually better to try and remove the
impediment, rather than unroll by hand.
cleaner, more portable, better performance

Compiler has to determine independence of iterations

epce

Loop unrolling

Loops with small bodies generate small basic blocks of
assembly code

lot of dependencies between instructions

high branch frequency

little scope for good instruction scheduling

Loop unrolling is a technique for increasing the size of the
loop body

gives more scope for better schedules

reduces branch frequency

make more independent instructions available for multiple issue.

epcc

Loop unrolling

Replace loop body by multiple copies of the body
Modify loop control

take care of arbitrary loop bounds
Number of copies is called unroll factor

Example: do i=1,n-3,4
a(i)=b(i)+d*c (i)
a(i+l)=b (i+1l)+d*c(i+1)

do i=1,n a(i+2)=b(i+2)+d*c(i+2)
a(i)=b(i)+d*c (i) . a(i+3)=b(i+3)+d*c (i+3)
end do end do
do jJj = 1i,n

a(J)=b(J)+d*c(J)

end do m
“::,E!%iiiiiiﬁiil ‘(:3F.)(;x;; fi j 3

Remember that this is in fact done by the compiler at the
IR or assembly code level.

If the loop iterations are independent, then we end up with
a larger basic block with relatively few dependencies, and
more scope for scheduling.

also reduce no. of compare and branch instructions
Choice of unroll factor is important (usually 2,4,8)

if factor is too large, can run out of registers
Cannot unroll loops with complex flow control

hard to generate code to jump out of the unrolled version at the
right place

epcc

Impediments to unrolling

Function calls
except in presence of good interprocedural analysis and inlining

Conditionals
especially control transfer out of the loop
Lose most of the benefit anyway as they break up the basic block.

Pointer/array aliasing
Compiler can’ t be sure different values don’t overlap in memory

epce

Example

for (i=0;i<ip;i++) {
alindx[i]] += c[i] * al[ip];
}

Compiler doesn’ t know that a[indx[i]] and a[ip] don’t
overlap

Could try hints

tell compiler that indx is a permutation
tell compiler that it is OK to unroll

Or could rewrite: tmp = a[ip] ;

for (i=0;i<ip;i++) {
alindx[1]] += c[i] * tmp;
}

epce

Inlining

Compilers very variable in their abilities

Hand inlining possible
very ugly (slightly less so if done via pre-processor macros)
causes code replication

Compiler has to know where the source of candidate routines is.
sometimes done by compiler flags
easier for routines in the same file
try compiling multiple files at the same time

Very important for OO code
OO design encourages methods with very small bodies
inline keyword in C++ can be used as a hint

epcc

Vector Instructions (Vectorisation)

Modern CPUs can perform multiple operations each cycle
Use special SIMD (Single Instruction Multiple Data) instructions
e.g. SSE, AVX

Operate on a "vector" of data
typically 2 or 4 double precision
potentially gives speedup in floating point operations
Usually only one loop is vectorisable in loop nest
And most compilers only consider inner loop

epce

Optimising compilers will use vector instructions
Relies on code being vectorisable
...or in a form that the compiler can convert to be vectorisable
Some compilers are better at this than others

But there are some general guidelines about what is likely to
work...

epcc

e
Requirements for vectorisation

Loops must have determinable (at run time) trip count
rules out most while loops

Loops must not contain function/subroutine calls

unless the call can be inlined by the compiler
maths library functions usually OK

Loops must not contain braches or jumps

guarded assignments may be OK

e.g. if (a[i] !'= 0.0) b[i] = ¢ * a[i];
Loop trip counts needs to be long, or else a multiple of the
vector length

epce

Loops must no have dependencies between iterations
reductions usually OK, e.g. sum += a[i];
avoid induction variables e.g. indx += 3;
use restrict
may need to tell the compiler if it can’t work it out for itself

Aligned data is best

e.g. AVX vector loads/stores operate most effectively on 32-bytes
aligned address

need to either let the compiler align the data....
..or tell it what the alignment is

Unit stride through memory is best

epcc

Multiple Optimisation steps

Sometimes multiple optimisation steps are required.
Multiple levels of in-lining.

In-lining followed by loop un-rolling followed by CSE.

The compiler may not be able to perform all steps at the
same time

You may be able to help the compiler by performing some of the
steps by hand.

Look for the least damaging code change that allows the compiler
to complete the rest of the necessary changes.

|deally try each step in isolation before attempting to combine
hand-optimisations.

epce

Data structures

Changing the programs data structures can often give
good performance improvements

These are often global changes to the program and therefore
expensive.

Code re-writing tools can help with this.

Easier if data structures are reasonably opaque, declared once
objects, structs, F90 types, included common blocks.

As memory access is often the major performance bottleneck the
benefits can be great.

Improve cache/register utilisation.
Avoid pointer chasing

May be able to avoid memory access problems by changing code
structure in key areas instead.

epcc

Programmer’s perspective:

Memory structures are the programmers responsibility

At best the compiler can add small amounts of padding in limited
circumstances.

Compilers can (and hopefully will) try to make best use of the
memory structures that you specify (e.g. uni-modular
transformations)

Changing the memory structures you specify may allow
the compiler to generate better code.

epce

e
Arrays

Arrays are large blocks of memory indexed by integer
iIndex

Probably the most common data structure used in HPC
codes

Good for representing regularly discretised versions of
dense continuous data

S (ey,z)=Fl]| 4]

epcc

S
N~y %
M
@)
<

e
Arrays

Many codes loop over array elements
Data access pattern is regular and easy to predict

Unless loop nest order and array index order match the
access pattern may not be optimal for cache re-use.

Compiler can often address these problems by transforming the
loops.

But sometimes can do a better job when provided with a more
cache-friendly index order.

epce

What can go wrong

Poor cache/page use
Lack of spatial locality
Lack of temporal locality
cache thrashing

Unnecessary mMemory aCcCesses
pointer chasing
array temporaries

Aliasing problems
Use of pointers can inhibit code optimisation

epce

Reducing memory accesses

Memory accesses are often the most important limiting
factor for code performance.

Many older codes were written when memory access was relatively
cheap.
Things to look for:

Unnecessary pointer chasing
pointer arrays that could be simple arrays
linked lists that could be arrays.

Unnecessary temporary arrays.
Tables of values that would be cheap to re-calculate.

epcc

Utilizing caches

Want to use all of the data in a cache line
loading unwanted values is a waste of memory bandwidth.
structures are good for this
or loop fastest over the corresponding index of an array.

Place variables that are used together close together
Also have to worry about alignment with cache block boundaries.

Avoid “gaps” in structures

In C structures may contain gaps to ensure the address of each
variable is aligned with its size.

epce

Arrays and caches

Bad: non-contiguous memory accesses

do i=1l,n for (3j=0;i<m;j++) {
do j=1,m for (i=0;i<n;i++) {
a(i,j) =b * c(1,]) afi][]J] = b * c[i][]];
end do }
end do }

Good: contiguous memory accesses

do j=1,m for (i=0;i<n;i++) {
do i=1,n for (j=0;j<m; j++) {
a(i,j) = b * c(1,3) al[i][j] = b * c[1i][3]];
end do }
end do }

epcc

-
Cache blocking

A combination of:
strip mining (also called loop blocking, loop tiling...)
loop interchange

Designed to increase data reuse:
temporal reuse: reuse array elements already referenced
spatial reuse: good use of cache lines

Many ways to block any given loop nest

Which loops should be blocked?
What block size(s) will work best?

epcc

Blocking example

for (i=0;i<n;i++) {
for (j=0;3j<n;j++) {
a[i][jl1+=b[1][]];
}
}

\f

4 4

4

I

for (ii=0;ii<n;ii+=B) {
for (3j=0;3jj<n;3jj+=B){
for (i=ii;i<ii+B;i++){
for (3=33:;3<jj+B;Ji++){
ali] [J]+=b[1][3]’

l > >
> >

Further cache optimisations

If multiple loop nests process a large array
First element of array will be out of cache when start second loop nest

Improving cache use
Consider fusing the loop nests
Completely: just have one loop nest
Partial: have one outer loop, containing multiple inner loops

Beware that too much fusion can result in lots of temporaries and cause
the compiler to run out of registers....

epcc

do j =1, Nj

do 1 =1, Ni
a(i,j)=b(i,j)*2
enddo

enddo

do j = 1, Nj

do i = 1, Ni
a(i,j)=a(i,j)+1
enddo

enddo

do j =1, Nj

do 1 =1, Ni
a(i,j)=b(i,Jj)*2
a(i,j)=a(i,j)+1
enddo

enddo

epCC

do j =1, Nj

do 1 =1, Ni
a(i,j)=b(i,j)*2
enddo

do 1 =1, Ni
a(i,j)=a(i,j)+1
enddo

enddo

.,
Further cache optimisations

Perhaps cache block before fusing
Fuse one or more of the outer blocking loops
If multiple subprograms process the array
Remove one or more outer loops (or all loops) from subprograms
Haul loop into parent routine, pass in index values instead
Might want to ensure that compiler is inlining this routine
This technique is very useful if you want to use OpenMP/OpenACC
Beware of Fortran

array syntax often bad
a(:,:)=b(:,:)*2
a(:,)=a(:,:)+1

compiler unlikely to fuse any loops

epcc

CALL subl(a,b)
CALL sub2(a)

SUBROUTINE subl(a)

do j=1,Nj
do i=1,Ni
a(i,j)=b(i,Jj)*2
enddo

enddo

END SUBROUTINE subl

do j =1, Nj

CALL subl(a,b,j)
CALL sub2(a,j)
enddo

SUBROUTINE subl(a,j)
do i=1,Ni
a(i,j)=b(i,j)*2
enddo

END SUBROUTINE subl

epCe

-
Optimising for TLB

Aim to reuse data on a page
l.e. treat similarly to a cache

Standard-sized pages are 4kB

But you can use larger "huge" pages
128kB, 512kB, 2MB,... 64MB

Almost always benefit HPC applications
regular data accesses
huge pages give fewer TLB misses

Huge pages can also help communication performance

epcc

-
Prefetch

Some processors (including Ivy Bridge) prefetch
automatically

Regular access patterns are recognized and cache lines

fetched in advance.
Usually only works for contiguous sequence of cache misses.

Processor has a set of stream buffers

Each holds address of an active stream

Loads to the current block causes the next block to be prefetched
and the stream address to be updated.

Streams are established by series of cache misses to consecutive
locations

epcc

Using streams

To utilize stream hardware use linear access patterns
where possible

Only the order of cache block accesses needs to be linear, not
each word access.

Most loops will require multiple streams

If the loop requires more streams than are supported in hardware
no prefetching will take place for some of the loads.

Consider splitting the loop.

Prefetching typically cannot cross OS page boundaries
huge pages may help

epcc

Pointer aliasing

Pointers are variables containing memory addresses.
Pointers are useful but can seriously inhibit code performance.

Compilers try very hard to reduce memory accesses.

Only loading data from memory once.

Keep variables in registers and only update memory copy when
necessary.

Pointers could point anywhere, so to be safe compiler will:
Reload all values after write through pointer
Synchronize all variables with memory before read through pointer

epce

-
Pointers and Fortran

F/77 had no pointers

Arguments passed by reference (address)
Subroutine arguments are effectively pointers
But it is illegal Fortran if two arguments overlap

FI0/F95 has restricted pointers

Pointers can only point at variables declared as a “target” or at the
target of another pointer

Compiler therefore knows more about possible aliasing problems

Try to avoid F90 pointers for performance critical data
structures.

epcc

Pointers and C

In C pointers are unrestricted
Can therefore seriously inhibit performance

Almost impossible to do without pointers

malloc requires the use of pointers.

Pointers used for call by reference. Alternative is call by value
where all data is copied!

Use the C99 restrict keyword where possible
...or else use compiler flags

Explicit use of scalar temporaries may also reduce the
problem

epcc

I
Key points to remember

Optimisation tunes a code for a particular environment
Not all optimisations are portable.

Optimisation is an experimental process.

Need to think about cost/benefit of any change.

Always verify the results are correct.

epcc

