
Threaded programming
Introduction to performance optimisation

Slides contributed by Cray and EPCC

Why?
•  Large computer simulations are becoming common in

many scientific disciplines.
•  These often take a significant amount of time to run.

•  Sometimes they take too long.
•  There are three things that can be done

•  Change the science (compromise the research)
•  Change the computer (spend more money)
•  Change the program (this is performance optimisation)

What?
•  There are usually many different ways you can write a

program and still obtain the correct results.
• Some run faster than others.

•  Interactions with the computer hardware.
•  Interactions with other software.

• Performance optimisation is the process of making an
existing working computer program run faster in a
particular Hardware and Software environment.
•  Converting a sequential program to run in parallel is an example of

optimisation under this definition!

When?
• Performance optimisation can take large amounts of

development time.
• Some optimisations improve program speed at the cost of

making the program harder to understand (increasing the
cost of future changes)

• Some optimisations improve program speed at the cost of
making the program more specialised and less general
purpose.

•  It is always important to evaluate the relative costs and
benefits when optimising a program
•  This requires the ability to estimate potential gains in advance

How?
• Performance optimisation usually follows a cycle:

Verify results

Measure performance

Change code
Propose change
or Exit

Theory

Measuring performance
•  It is not enough to just measure overall speed

•  You need to know where the time is going.
•  There are tools to help you do this

•  They are called profiling tools.
•  They give information about:

•  Which sections of code are taking the time
•  Sometimes line by line but usually only subroutines.

•  Sometimes the type of operation
•  memory access
•  floating point calculations
•  file access

•  Make sure you understand how variable your results are
•  Are the results down to my changes or just random variation?

Input dependence
• Many codes perform differently with different input data.
• Use multiple sets of input data when measuring

performance.
• Make sure these are representative of the problems

where you want the code to run quickly.

•  Its only worth working on parts of the code that take a lot
of time.

•  Large speed-up of unimportant sections have little
impact on the overall picture.
•  Amdahl’s law is this concept applied to parallel processing.
•  Same insight applies to other forms of optimisation.

Only optimise important
sections

40%

40%

20%

90%

2X

What is profiling?
• Analysing your code to find out the proportion of execution

time spent in different routines.

• Essential to know this if we are going to target
optimisation.

• No point optimising routines that don’t significantly
contribute to the overall execution time.
•  can just make your code less readable/maintainable

Code profiling
• Code profiling is the first step for anyone interested in

performance optimisation
• Profiling works by instrumenting code at compile time

•  Thus it’s (usually) controlled by compiler flags
•  Can reduce performance

• Standard profiles return data on:
•  Number of function calls
•  Amount of time spent in sections of code

• Also tools that will return hardware specific data
•  Cache misses, TLB misses, cache re-use, flop rate, etc…
•  Useful for in-depth performance optimisation

Analysis and Profiling

Sampling and tracing
• Many profilers work by sampling the program counter at

regular intervals (normally 100 times per second).
•  low overhead, little effect on execution time

• Builds a statistical picture of which routines the code is
spending time in.
•  if the run time is too small (< ~10 seconds) there aren’t enough

samples for good statistics
•  Tracing can get more detailed information by recording

some data (e.g. time stamp) at entry/exit to functions
•  higher overhead, more effect on runtime
•  unrestrained use can result in huge output files

Standard Unix profilers
• Standard Unix profilers are prof and gprof
• Many other profiling tools use same formats
• Usual compiler flags are -p and -pg:

•  ftn -p mycode.F90 -o myprog for prof
•  cc -pg mycode.c -o myprog for gprof

• When code is run it produces instrumentation log
•  mon.out for prof
•  gmon.out for gprof

•  Then run prof/gprof on your executable program
•  eg. gprof myprog (not gprof gmon.out)

Analysis and Profiling

Standard profilers
•  prof myprog reads mon.out and produces this:
%Time Seconds Cumsecs #Calls msec/call Name
 32.4 0.71 0.71 14 50.7 relax_
 28.3 0.62 1.33 14 44.3 resid_
 11.4 0.25 1.58 3 83. __f90_close
 5.9 0.13 1.71 1629419 0.0001 _mcount
 5.0 0.11 1.82 339044 0.0003 __f90_slr_i4
 5.0 0.11 1.93 167045 0.0007
__inrange_single

 2.7 0.06 1.99 507 0.12 _read
 2.7 0.06 2.05 1 60. MAIN_

Analysis and Profiling

Standard profilers
•  gprof myprog reads gmon.out and produces something

very similar
•  gprof also produces a program calltree sorted by inclusive

times
•  Both profilers list all routines, including obscure system ones

•  Of note: mcount(), _mcount(), moncontrol(), _moncontrol()
monitor() and _monitor() are all overheads of the profiling
implementation itself

•  _mcount() is called every time your code calls a function; if it’s high in
the profile, it can indicate high function-call overhead

•  gprof assumes calls to a routine from different parents take the same
amount of time – may not be true

Analysis and Profiling

The Golden Rules of profiling
•  Profile your code

•  The compiler/runtime will NOT do all the optimisation for you.

•  Profile your code yourself
•  Don't believe what anyone tells you. They're wrong.

•  Profile on the hardware you want to run on
•  Don't profile on your laptop if you plan to run on ARCHER.

•  Profile your code running the full-sized problem
•  The profile will almost certainly be qualitatively different for a test case.

•  Keep profiling your code as you optimise
•  Concentrate your efforts on the thing that slows your code down.
•  This will change as you optimise.
•  So keep on profiling.

Theory
• Optimisation is an experimental process.
• You propose reasons why a code section is slow.
• Make corresponding changes.
•  The results may surprise you

•  Need to revise the theory

• Never “optimise” without measuring the impact.

Exit ?
•  It is important to know when to stop.
• Each time you propose a code change consider:

•  The likely improvement
•  Code profile and Amdahl`s law helps here.
•  Take account of how long much use you expect for the optimised code.

Single use programs are rarely worth optimising.
•  The likely cost

•  Programming/debugging time.
•  Delay to starting simulation
•  “Damage” to the program

Changing code
• Many proposed changes will turn out not be useful.
• You may have to undo your changes.

•  At the very least keep old versions
•  Better to use revision control software.

• Always check the results are still correct !!
•  No point measuring performance if the results are wrong
•  A good test framework will help a lot

Damaging code
• Performance changes can damage other desirable

aspects of the code.
•  Loss of encapsulation.
•  Loss of clarity
•  Loss of flexibility

•  Think about down-side of changes.
•  Look for alternative changes with same performance

benefit but less damage.

Experimental frameworks
•  Like any experiment, you need to keep good records.
•  You will be generating large numbers of different versions of the

code.
•  You need to know exactly what the different version were.
•  How you compiled them.
•  Did they get the correct answer.
•  How did they perform.

•  You may need to be able to re-run or reproduce your experiments
•  You discover a bug
•  A new compiler is released
•  A new hardware environment becomes available.
•  Etc.

Making things easier
• Keep everything under version control (including results)
• Script your tests so they are easy to run and give a clear

yes/no answer.
• Write timing data into separate log-files in easily machine

readable format.
• Keep notes.

Architecture trends
• Optimisation is the process of tuning a code to run faster

in a particular Hardware and Software environment.
•  The hardware environment consists of many different

resources
•  FPU
•  Cache
•  Memory
•  I/O

• Any of these resources could be the limiting factor for
code performance
•  Which one depends on the application

CPU resources
•  In the early days of computing memory accesses were

essentially free.
•  Optimisation consisted of reducing the instruction count.

•  This is no longer the case, and is getting worse
•  CPU performance increases at approx. 80% per year (though

recently this has been due to increasing core count rather than
clock speed)

•  memory speed increases at approx. 7% per year

• Most HPC codes/systems are memory bandwidth limited.

Types of optimisation
D

iff
ic

ul
ty

Impact

Algorithm

Code structure

Data structures

Library calls
Compiler flags

Parallelism

Compiler flags
• Easiest thing to change are the compiler flags
• Most compilers will have good optimisation by default.

•  Some compiler optimisations are not always beneficial and need to
be requested explicitly.

•  Some need additional guidance from user (e.g. inter-file in-lining)
•  Some break language standards and need to be requested

explicitly
•  E.g. a/2 -> a*0.5 is contrary to Fortran standard but is usually safe.
•  Usually worthwhile to read compiler manual pages before optimising.

Library calls
•  The easiest way to make a big impact on code

performance is to re-use existing optimised code.
•  Libraries represent large amount of development effort

•  Somebody else has put in the effort so you don’t have to,
• Code libraries exist for commonly used functionality (e.g.

linear algebra, FFTs etc.).
•  Often possible to access highly optimised versions of these

libraries.
•  Even if the application code does not use a standard library it is

often easy to re-write to use the standard calls.

Algorithm
•  The biggest performance increases typically require a

change to the underlying algorithm.
•  Consider changing an O(N) sort algorithm to a O(log(N)) algorithm.
•  This is a lot of work as the relevant code section usually needs a

complete re-write.
• A warning

•  The complexity of an algorithm O(N), O(log(N)), O(N log(N)) etc. is
related to number of operations and is not always a reliable
indication of performance.
•  Pre-factor may make a “worse” algorithm perform better for the value of

N of interest.
•  The “worse” algorithms may have much better cache re-use

•  Most optimisations involve changes to code structure
•  Loop unrolling
•  Loop fusion
•  routine in-lining.

•  Often overlap with optimisations attempted by the compiler.
•  Often better to help the compiler to do this than perform change by

hand.
•  Easier to implement than data changes as more localised.

•  Performance impact is often also smaller unless the code fragment is a
major time consumer.

•  Performance improvement often at the expense of code
maintainability.
•  Try to keep the unoptimised version up to date as well.

Code structure

Helping the compiler
• Unless we write assembly code, we are always using a

compiler.
• Modern compilers are (quite) good at optimisation

•  memory optimisations are an exception
• Usually much better to get the compiler to do the

optimisation.
•  avoids machine-specific coding
•  compilers break codes much less often than humans

• Even modifying code can be thought of as “helping the
compiler”.

Compiler flags
•  Typical compiler has hundreds of flags/options.

•  most are never used
•  many are not related to optimisation

• Most compilers have flags for different levels of general
optimisation.
•  -O1, -O2, -O3,....

• When first porting code, switch optimisation off.
•  only when you are satisfied that the code works, turn optimisation

on, and test again.
•  but don’t forget to use them!
•  also don’t forget to turn off debugging, bounds checking and

profiling flags...

Compiler flags (cont.)
• Note that highest levels of optimisation may

•  break your code.
•  give different answers, by bending standards.
•  make your code go slower.

• Always read documentation carefully.

•  Isolate routines and flags which cause the problem.
•  binary chop
•  one routine per file may help

Code modification
•  When flags and hints don’t solve the problem, we will have to

resort to code modification.

•  Be aware that this may
•  introduce bugs.
•  make the code harder to read/maintain.
•  only be effective on certain architectures and compiler versions.

•  Try to think about
•  what optimisation the compiler is failing to do
•  What additional information can be provided to compiler
•  how can rewriting help

Locals and globals
• Compiler analysis is more effective with local variables
• Has to make worst case assumptions about global

variables
• Globals could be modified by any called procedure.
• Use local variables where possible
• Automatic variables are stack allocated: allocation is

essentially free.
•  In C, use file scope globals in preference to externals

Conditionals
• Even with sophisticated branch prediction hardware,

branches are bad for performance.
•  Try to avoid branches in innermost loops.

•  if you can’t eliminate them, at least try to get them out of the critical
loops.

do i=1,k
 if (n .eq. 0) then
 a(i) = b(i) + c
 else
 a(i) = 0.
 endif
end do

if (n .eq. 0) then
 do i=1,k
 a(i) = b(i) + c
 end do
else
 do i=1,k
 a(i) = 0.
 end do
endif

Data types
• Performance can be affected by choice of data types

•  often a difference between 32-bit and 64-bit arithmetic (integer and
floating point).

•  complicated by trade-offs with memory usage and cache hit rates

• Avoid unnecessary type conversions
•  e.g. int to long, float to double
•  N.B. some type conversions are implicit
•  However sometimes better than the alternative e.g.

•  Use DP reduction variable rather than increase array precision.

CSE
• Compilers are generally good at Common Subexpression

Elimination.
• A couple of cases where they might have trouble:

Different order of operands

Function calls

d = a + c
e = a + b + c

d = a + func(c)
e = b + func(c)

Register use
• Most compilers make a reasonable job of register
allocation.
• But only limited number available.

• Can have problems in some cases:
•  loops with large numbers of temporary variables
•  such loops may be produced by inlining or unrolling
•  array elements with complex index expressions
•  can help compiler by introducing explicit scalar temporaries,

most compilers will use a register for an explicit scalar in
preference to an implicit CSE.

for (i=0;i<n;i++){
 b[i] += a[c[i]];
 c[i+1] = 2*i;
}

tmp = c[0];
for (i=0;i<n;i++){
 b[i] += a[tmp];
 tmp = 2*i;
 c[i+1] = tmp;
}

Spilling
•  If compiler runs out of registers it will generate spill code.

•  store a value and then reload it later on

• Examine your source code and count how many loads/
stores are required

• Compare with assembly code

• May need to distribute loops

Loop unrolling
•  Loop unrolling and software pipelining are two of the most

important optimisations for scientific codes on modern
RISC processors.

• Compilers generally good at this.

•  If compiler fails, usually better to try and remove the
impediment, rather than unroll by hand.
•  cleaner, more portable, better performance

• Compiler has to determine independence of iterations

Loop unrolling
•  Loops with small bodies generate small basic blocks of

assembly code
•  lot of dependencies between instructions
•  high branch frequency
•  little scope for good instruction scheduling

•  Loop unrolling is a technique for increasing the size of the
loop body
•  gives more scope for better schedules
•  reduces branch frequency
•  make more independent instructions available for multiple issue.

42

Loop unrolling
• Replace loop body by multiple copies of the body
• Modify loop control

•  take care of arbitrary loop bounds

• Number of copies is called unroll factor
Example:

43

do i=1,n
 a(i)=b(i)+d*c(i)
end do

do i=1,n-3,4
 a(i)=b(i)+d*c(i)
 a(i+1)=b(i+1)+d*c(i+1)
 a(i+2)=b(i+2)+d*c(i+2)
 a(i+3)=b(i+3)+d*c(i+3)
end do
do j = i,n
 a(j)=b(j)+d*c(j)
end do

• Remember that this is in fact done by the compiler at the
IR or assembly code level.

•  If the loop iterations are independent, then we end up with
a larger basic block with relatively few dependencies, and
more scope for scheduling.
•  also reduce no. of compare and branch instructions

• Choice of unroll factor is important (usually 2,4,8)
•  if factor is too large, can run out of registers

• Cannot unroll loops with complex flow control
•  hard to generate code to jump out of the unrolled version at the

right place

44

Impediments to unrolling
•  Function calls

•  except in presence of good interprocedural analysis and inlining

• Conditionals
•  especially control transfer out of the loop
•  Lose most of the benefit anyway as they break up the basic block.

• Pointer/array aliasing
•  Compiler can’t be sure different values don’t overlap in memory

Example

• Compiler doesn’t know that a[indx[i]] and a[ip] don’t
overlap

• Could try hints
•  tell compiler that indx is a permutation
•  tell compiler that it is OK to unroll

• Or could rewrite:

for (i=0;i<ip;i++){
 a[indx[i]] += c[i] * a[ip];
}

tmp = a[ip];
for (i=0;i<ip;i++){
 a[indx[i]] += c[i] * tmp;
}

Inlining
•  Compilers very variable in their abilities

•  Hand inlining possible
•  very ugly (slightly less so if done via pre-processor macros)
•  causes code replication

•  Compiler has to know where the source of candidate routines is.
•  sometimes done by compiler flags
•  easier for routines in the same file
•  try compiling multiple files at the same time

•  Very important for OO code
•  OO design encourages methods with very small bodies
•  inline keyword in C++ can be used as a hint

Vector Instructions (Vectorisation)
• Modern CPUs can perform multiple operations each cycle

•  Use special SIMD (Single Instruction Multiple Data) instructions
•  e.g. SSE, AVX

•  Operate on a "vector" of data
•  typically 2 or 4 double precision
•  potentially gives speedup in floating point operations

•  Usually only one loop is vectorisable in loop nest
•  And most compilers only consider inner loop

• Optimising compilers will use vector instructions
•  Relies on code being vectorisable
•  ...or in a form that the compiler can convert to be vectorisable
•  Some compilers are better at this than others
•  But there are some general guidelines about what is likely to

work...

Requirements for vectorisation
•  Loops must have determinable (at run time) trip count

•  rules out most while loops

•  Loops must not contain function/subroutine calls
•  unless the call can be inlined by the compiler
•  maths library functions usually OK

•  Loops must not contain braches or jumps
•  guarded assignments may be OK
•  e.g. if (a[i] != 0.0) b[i] = c * a[i];

•  Loop trip counts needs to be long, or else a multiple of the
vector length

•  Loops must no have dependencies between iterations
•  reductions usually OK, e.g. sum += a[i];
•  avoid induction variables e.g. indx += 3;
•  use restrict
•  may need to tell the compiler if it can’t work it out for itself

• Aligned data is best
•  e.g. AVX vector loads/stores operate most effectively on 32-bytes

aligned address
•  need to either let the compiler align the data....
•  ..or tell it what the alignment is

• Unit stride through memory is best

Multiple Optimisation steps
• Sometimes multiple optimisation steps are required.

•  Multiple levels of in-lining.
•  In-lining followed by loop un-rolling followed by CSE.

•  The compiler may not be able to perform all steps at the
same time
•  You may be able to help the compiler by performing some of the

steps by hand.
•  Look for the least damaging code change that allows the compiler

to complete the rest of the necessary changes.
•  Ideally try each step in isolation before attempting to combine

hand-optimisations.

Data structures
• Changing the programs data structures can often give

good performance improvements
•  These are often global changes to the program and therefore

expensive.
•  Code re-writing tools can help with this.
•  Easier if data structures are reasonably opaque, declared once

•  objects, structs, F90 types, included common blocks.
•  As memory access is often the major performance bottleneck the

benefits can be great.
•  Improve cache/register utilisation.
•  Avoid pointer chasing

•  May be able to avoid memory access problems by changing code
structure in key areas instead.

Programmer’s perspective:
• Memory structures are the programmers responsibility

•  At best the compiler can add small amounts of padding in limited
circumstances.

•  Compilers can (and hopefully will) try to make best use of the
memory structures that you specify (e.g. uni-modular
transformations)

• Changing the memory structures you specify may allow
the compiler to generate better code.

Arrays
• Arrays are large blocks of memory indexed by integer

index
• Probably the most common data structure used in HPC

codes
• Good for representing regularly discretised versions of

dense continuous data
𝑓(𝑥,𝑦,𝑧)→𝐹[𝑖][𝑗][𝑘]

Arrays
• Many codes loop over array elements

•  Data access pattern is regular and easy to predict

• Unless loop nest order and array index order match the
access pattern may not be optimal for cache re-use.
•  Compiler can often address these problems by transforming the

loops.
•  But sometimes can do a better job when provided with a more

cache-friendly index order.

What can go wrong
• Poor cache/page use

•  Lack of spatial locality
•  Lack of temporal locality
•  cache thrashing

• Unnecessary memory accesses
•  pointer chasing
•  array temporaries

• Aliasing problems
•  Use of pointers can inhibit code optimisation

Reducing memory accesses
• Memory accesses are often the most important limiting

factor for code performance.
•  Many older codes were written when memory access was relatively

cheap.

•  Things to look for:
•  Unnecessary pointer chasing

•  pointer arrays that could be simple arrays
•  linked lists that could be arrays.

•  Unnecessary temporary arrays.
•  Tables of values that would be cheap to re-calculate.

Utilizing caches
• Want to use all of the data in a cache line

•  loading unwanted values is a waste of memory bandwidth.
•  structures are good for this
•  or loop fastest over the corresponding index of an array.

• Place variables that are used together close together
•  Also have to worry about alignment with cache block boundaries.

• Avoid “gaps” in structures
•  In C structures may contain gaps to ensure the address of each

variable is aligned with its size.

Arrays and caches

do j=1,m
 do i=1,n
 a(i,j) = b * c(i,j)
 end do
end do

do i=1,n
 do j=1,m
 a(i,j) = b * c(i,j)
 end do
end do

for (i=0;i<n;i++){
 for (j=0;j<m;j++){
 a[i][j] = b * c[i][j];
 }
}

for (j=0;i<m;j++){
 for (i=0;i<n;i++){
 a[i][j] = b * c[i][j];
 }
}

Bad: non-contiguous memory accesses

Good: contiguous memory accesses

Cache blocking

• A combination of:
•  strip mining (also called loop blocking, loop tiling...)
•  loop interchange

• Designed to increase data reuse:
•  temporal reuse: reuse array elements already referenced
•  spatial reuse: good use of cache lines

• Many ways to block any given loop nest
•  Which loops should be blocked?
•  What block size(s) will work best?

Blocking example

62

for (i=0;i<n;i++){
 for (j=0;j<n;j++){
 a[i][j]+=b[i][j];
 }
}

for (ii=0;ii<n;ii+=B){
 for (jj=0;jj<n;jj+=B){
 for (i=ii;i<ii+B;i++){
 for (j=jj;j<jj+B;j++){
 a[i][j]+=b[i][j];
 }
 }
 }
}

j
i

j

i

Further cache optimisations

•  If multiple loop nests process a large array
•  First element of array will be out of cache when start second loop nest

•  Improving cache use
•  Consider fusing the loop nests

•  Completely: just have one loop nest
•  Partial: have one outer loop, containing multiple inner loops

•  Beware that too much fusion can result in lots of temporaries and cause
the compiler to run out of registers....

Original code Complete fusion Partial fusing
do	
 j	
 =	
 1,	
 Nj	

	
 do	
 i	
 =	
 1,	
 Ni	

	
 	
 a(i,j)=b(i,j)*2	
 	
 	

	
 enddo	

enddo	

	

do	
 j	
 =	
 1,	
 Nj	

	
 do	
 i	
 =	
 1,	
 Ni	

	
 	
 a(i,j)=a(i,j)+1	
 	
 	

	
 enddo	

enddo	

do	
 j	
 =	
 1,	
 Nj	

	
 do	
 i	
 =	
 1,	
 Ni	

	
 	
 a(i,j)=b(i,j)*2	
 	
 	

	
 	
 a(i,j)=a(i,j)+1	
 	
 	

	
 enddo	

enddo	

do	
 j	
 =	
 1,	
 Nj	

	
 do	
 i	
 =	
 1,	
 Ni	

	
 	
 a(i,j)=b(i,j)*2	
 	
 	

	
 enddo	

	
 do	
 i	
 =	
 1,	
 Ni	

	
 	
 a(i,j)=a(i,j)+1	
 	
 	

	
 enddo	

enddo	

Further cache optimisations
•  Perhaps cache block before fusing

•  Fuse one or more of the outer blocking loops
•  If multiple subprograms process the array

•  Remove one or more outer loops (or all loops) from subprograms
•  Haul loop into parent routine, pass in index values instead
•  Might want to ensure that compiler is inlining this routine
•  This technique is very useful if you want to use OpenMP/OpenACC

•  Beware of Fortran
•  array syntax often bad

•  a(:,:)=b(:,:)*2	

•  a(:,:)=a(:,:)+1	

•  compiler unlikely to fuse any loops

Original code
CALL	
 sub1(a,b)	

CALL	
 sub2(a)	

	

SUBROUTINE	
 sub1(a)	

	
 do	
 j=1,Nj	

	
 	
 do	
 i=1,Ni	

	
 	
 	
 a(i,j)=b(i,j)*2	
 	
 	

	
 	
 enddo	

	
 enddo	

END	
 SUBROUTINE	
 sub1	

After hauling
do	
 j	
 =	
 1,	
 Nj	

	
 CALL	
 sub1(a,b,j)	

	
 CALL	
 sub2(a,j)	

enddo	

	

SUBROUTINE	
 sub1(a,j)	

	
 do	
 i=1,Ni	

	
 	
 a(i,j)=b(i,j)*2	
 	
 	

	
 enddo	

END	
 SUBROUTINE	
 sub1	

Optimising for TLB

• Aim to reuse data on a page
•  i.e. treat similarly to a cache

• Standard-sized pages are 4kB
•  But you can use larger "huge" pages

•  128kB, 512kB, 2MB,... 64MB
•  Almost always benefit HPC applications

•  regular data accesses
•  huge pages give fewer TLB misses

•  Huge pages can also help communication performance

Prefetch
• Some processors (including Ivy Bridge) prefetch

automatically
• Regular access patterns are recognized and cache lines

fetched in advance.
•  Usually only works for contiguous sequence of cache misses.

• Processor has a set of stream buffers
•  Each holds address of an active stream
•  Loads to the current block causes the next block to be prefetched

and the stream address to be updated.
•  Streams are established by series of cache misses to consecutive

locations

Using streams
•  To utilize stream hardware use linear access patterns

where possible
•  Only the order of cache block accesses needs to be linear, not

each word access.

• Most loops will require multiple streams
•  If the loop requires more streams than are supported in hardware

no prefetching will take place for some of the loads.
•  Consider splitting the loop.

• Prefetching typically cannot cross OS page boundaries
•  huge pages may help

Pointer aliasing
• Pointers are variables containing memory addresses.

•  Pointers are useful but can seriously inhibit code performance.

• Compilers try very hard to reduce memory accesses.
•  Only loading data from memory once.
•  Keep variables in registers and only update memory copy when

necessary.

• Pointers could point anywhere, so to be safe compiler will:
•  Reload all values after write through pointer
•  Synchronize all variables with memory before read through pointer

Pointers and Fortran
•  F77 had no pointers
• Arguments passed by reference (address)

•  Subroutine arguments are effectively pointers
•  But it is illegal Fortran if two arguments overlap

•  F90/F95 has restricted pointers
•  Pointers can only point at variables declared as a “target” or at the

target of another pointer
•  Compiler therefore knows more about possible aliasing problems

•  Try to avoid F90 pointers for performance critical data
structures.

Pointers and C
•  In C pointers are unrestricted

•  Can therefore seriously inhibit performance

• Almost impossible to do without pointers
•  malloc requires the use of pointers.
•  Pointers used for call by reference. Alternative is call by value

where all data is copied!

• Use the C99 restrict keyword where possible
•  ...or else use compiler flags
• Explicit use of scalar temporaries may also reduce the

problem

Key points to remember
• Optimisation tunes a code for a particular environment

•  Not all optimisations are portable.

• Optimisation is an experimental process.

• Need to think about cost/benefit of any change.

• Always verify the results are correct.

