Structured File Formats:
NetCDF and HDF

Adam Carter
EPCC, The University of Edinburgh

EPSRC NES=:

This lecture material

For full acknowledgements and more details about re-use please see
the final slide of this presentation.

©0Ee

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en US

This means you are free to copy and redistribute the material and adapt and build on the material under the following
terms: You must give appropriate credit, provide alinkto the license and indicate if changes were made. If you adapt or
build on the material you must distribute your work underthe same license as the original.

Note that this presentation containsimages owned by others. Please seek their permission before reusing these

archenr cSOCC

Outline

An introduction to NetCDF and HDF5 as examples of
structured file formats suitable for HPC applications

Overview of both formats
HDF5 (in more detail)

NetCDF (in less detail)

epcc

<
<
~
A
o
<

/O

|/O essential for all applications/codes
Some data must be read in or produced
Instructions and Data

Basic hierarchy
CPU - Cache — Memory — Devices (including 1/O)

Often “forgotten” for HPC systems

Linpack not /O bound

Not based on CPU clock speed or memory size
Often “forgotten” in program

Start and end so un-important
Just assumed overhead

epce

<
~
~
~
o
<

/0

Small parallel programs (i.e. under 1000 processors)
Cope with I/O overhead

Large parallel programs (i.e. tens of thousand
pProcessors)

Can completely dominate performance

Exacerbate by poor functionality/performance of I/O systems
Any opportunity for program optimisation important

Improve performance without changing program

epcc

<
<
~
~
o
<

Parallel |/O

...Is covered elsewhere in this course
...Is not easy to do well, but:

You don’t have to choose performance over usability!

Using I/O libraries like NetCDF and HDF5 can get you
advantages of structured data and you will also benefit
from work that others have put in to optimise |/O
performance and scaling.

epce

<
<
~
A
o
<

NetCDF

Network Common Data Format
Data model
File format
Application programming interface (API)
Library implementing the API

NetCDF

Created in the US by unidata for earth science and geoscience data,
supported by the NSF

NetCDF
Software library and self-describing data format
Portable, machine independent data

Can use HDF5 or NetCDF format (HDF5 gives larger files and unlimited array
dimensions) in NetCDF 4.0 (latest version)

epce

What is HDF5?

Hierarchical Data Format (version 5)
From www.hdfgroup.org:

HDFS5 is a unique technology suite that makes possible the
management of extremely large and complex data
collections.

\)N[‘,/:\
. S
< 7 | &
arcnenr i DEaq B
N N A
\ A >
<6/) \\Q~
IND®

What is HDF5?

A versatile data model that can represent very complex data
objects and a wide variety of metadata.

A completely portable file format with no limit on the number
or size of data objects in the collection.

A software library that runs on a range of computational
platforms, from laptops to massively parallel systems, and
implements a high-level APl with C, C++, Fortran 90, and Java
interfaces.

A rich set of integrated performance features that allow for
access time and storage space optimizations.

Tools and applications for managing, manipulating, viewing,
and analyzing the data in the collection.

Source: www.hdf5group.org (emphasis mine)

Sl h

\Q' N4 Jl’
archer eDCC| &

<6/) N <N

Data Model

In very basic terms, HDF is like a directory and file
hierarchy in a file

The data model is based on groups and datasets
can think of groups like directories/folders, datasets like files
both can have (user-defined) attributes

epcc

<
~
~
~
o
<

Portable File Format

HDFS5 files are binary but portable

HDF5 model take care of types, endianness etc.

\'x\“ 1 V/:\
- %x 4)&/
< Vg A
&.6\ JJ“ QEJ
NEN »

Why HDF57?

- Structure
- Portability

- Performance

- Free & Open Source!

HDF5 files are Self-Describing

Tool Support

Pre-Optimised

Parallel-Ready

epCce

HDF5 Data Model and File Structure

manipulatee
‘ objects From

Abstract
Data Model

4 represents
objects Of

, lement
Programming 4 - ® Lib
Model Lorary
HDF5 APIs
layoutData transferData
‘xmplements

Storage Model
(Format)

Stored Data

Source: http://www.hdfgroup.org/HDF5/doc/UG/Images/Dmodel_fig1.JPG

epCce

<
<
~
~
7
<

HDF5 Groups

HDF5 group: “a grouping structure containing instances of
zero or more groups or datasets, together with supporting

metadata.”
A group has two parts:
A group header containing name & attributes
A group symbol table listing the group’s contents

Like UNIX directories, you can identify an object with a

path name:
/ the root group
/foo a member of the root group, called foo

[foo/lzoo a member of the foo group, called zoo

epcc

<
~
~
A
o
<

HDF5 Datasets

A dataset has two parts:

A header
A data array

Header provides information on:
Name
The dataset name. A sequence of alphanumeric characters.
Datatypes
Atomic, Compound, NATIVE, Named
Dataspace
Describes the dimensionality (including unlimited option)

Storage Layout
Contiguous, compact, chunked

epcc

Attribute

YR

1 0.,.* 0,.r 1
Datatype [4—=| Dataset [@—Pp| Dataspace

Data
describesOneElement P 4 describesArrayOfElements

archer

Source: https://www.hdfgroup.org/HDF5/doc1.6/UG/UG frame.html

epCce

HDF5 Attributes

Attributes are small named datasets that are attached to
primary datasets, groups, or named datatypes

Name, value pairs
Value can have multiple entries of the same datatype

There's a separate API for attribute read/write
Excessively large attribute sets will impact performance

epcc

<
<
~
A
o
<

The HDF5 API

HSF: File-level access routines
e.g. H5Fopen
H5G: Group functions, for creating and operating on
groups of objects
e.g. H5Gset
HS5T: DataType functions, for creating and operating on

simple and compound datatypes to be used as the
elements in data arrays

H5S: DataSpace functions, which create and manipulate
the dataspace in which the elements of a data array are
stored

epcc

<
<
~
A
o
<

HS5D: Dataset functions, which manipulate the data within

datasets and determine how the data is to be stored in the
file.

HS5P: Property list functions, for manipulating object
creation and access properties.

HSA: Attribute access and manipulating routines.
H5Z: Compression registration routine.

HSE: Error handling routines.

HS5R: Reference routines.

H5I: Identifier routine.

epce

<
<
~
~
o
<

Using HDF5 on ARCHER / RDF-DAC

In your program you'’ll need:
#include <hdf5.h>
On ARCHER you should
module load cray-hdf5-parallel
On RDF-DAC you don’t need to load anything to use HDF5
To use HDF5 from Python on either ARCHER or RDF-DAC, you should

module load anaconda

epcc

<
<
~
~
o
<

Example: Create and Close a File

A type defined in HDFS5. An HDF ID, used to keep
track of objects like files

hid t file; /* identifier */
/*

* Create a new file using HS5ACC_TRUNC access,

* default file creation properties, and default file

*

access properties.

* Then close the file.
*/

file = H5Fcreate(FILE, HS5ACC_TRUNC, H5P_DEFAULT, H5P _DEFAULT);
status = HS5Fclose(file);

epcc

Allows an existing file (if present) to be
overwritten

Example: Creating a dataset so that data
can be written to it

hid t dataset, datatype, dataspace; /* declare identifiers */

dimsf[@] = NX;
dimsf[1] = NY;
dataspace = H5Screate_simple(RANK, dimsf, NULL);

datatype = H5Tcopy(H5T_NATIVE INT);
status = H5Tset _order(datatype, H5T ORDER_LE);

dataset = H5Dcreate(file, DATASETNAME, datatype, dataspace, H5P_DEFAULT);

Example: Write data to a file

/>I<

* Write the data to the dataset using default transfer

* properties.

*/

status = H5Dwrite(dataset, H5T NATIVE INT, H5S ALL,
H5S ALL, HSP_DEFAULT, data);

Here's the data itself, stored as a

standard array of ints in C.

epcc

Example: Read data from a file

/*
* Write the data to the dataset using default transfer
* properties.
*/
status = H5Dread(dataset, H5T_NATIVE_ INT, H5S _ALL,
H5S ALL, HS5P_DEFAULT, data);

Exactly analogous to write!

<
~
~
A
o
<

epcc

Hyperslabs
Hyperslabs a re - — H);perilab sele:(tionX —
portions ofw Il 1] =] ==
Start: (0’1) X | X X | X X | X X || X
Strlde — (4,3) X | x X | x X | x X | x
COunt= (2,4) X | x X | x X | x X || x
block = (3,2)

Parallel HDF5

Designed to work with MPIl and MPI-10

Parallel HDF5 files are compatible with serial HDF5 files
and sharable between different serial and parallel
platforms

Parallel HDF5 had to be designed to have a single file
image to all processes, rather than having one file per
process. Having one file per process can cause
expensive post processing, and the files are not usable by

different processes.

A standard parallel 1/0 interface had to be portable to
different platforms.

epce

<
<
~
~
o
<

(Parallel

Application

Parallel
Application

Parallel
Application

Parallel

Application

!

! !

i

Parallel HDF +MPI
MPI-IO
02K Unix I/O SP GPFS TFLOPSPFS

User Applications

HDF library

Parallel I/O layer

Parallel Filesystems

Source: http://www.hdfgroup.org/HDF5/Tutor/poverview.html

©)-rcher

epCce

NetCDF

The netCDF niche is array-oriented scientific data.

Uses portable files as unit of self-describing data (unlike databases)
Emphasizes efficient direct access to data within files (unlike XML)

Provides a multidimensional array abstraction for scientific applications
(unlike databases and XML)

Avoids dependencies on external tables and registries (unlike GRIB
and BUFR)

Emphasizes simplicity over power (unlike HDF5)

Has built-in client support for network access to structured data from
servers
Has a large enough community of users to foster development of:
support in many third-party applications
third-party APls for other programming and scripting languages

community conventions, such as Climate and Forecast (CF) metadata
conventions

epcc

NetCDF

NetCDF has changed over time, so it includes the following:
Two data models
classic model (netCDF-1, netCDF-2, netCDF-3)
enhanced model (netCDF-4)

Two formats with variants
classic format and 64-bit offset variant for large files
netCDF-4 (HDF5-based) format and classic model variant

Two independent flavors of APIs
C-based interfaces (C, C++, Fortran-77, Fortran-90, Perl, Python, Ruby, Matlab, ...)

Java interface
However, newer versions support:
all previous netCDF data models
all previous netCDF formats and their variants

all previous APIs
Files written through one language API are readable through other language

APIs.

Q) -rcre epcc

Data netCDF COM
Models Eensic netCDF/CF (netCDF-4) HDF5
Data CF-1.0 netCDF Unidata ARGO
Conventions ' User Guide Obs

HDF-EOS netCDF classic netCDF-4
E j ‘ | ‘ HDF5 I ‘ |
Data
Formats ﬁ ﬁ
“ ‘ GRIB1 I ‘ GRIB2 | CoL

epcc

NetCDF

Common data model
Variables: N-dimensional arrays of char, byte, short, int, float, double
Dimensions: Name and length
Attributes: Annotations and other metadata

Groups: Hierarchical, similar to directories
User-defined types

Parallel functionality
Parallel HDF5
NetCDF4 version
Parallel NetCDF (PNetCDF)

Separate library, can write NetCDF 3 (and below) flies in parallel
Later versions of NetCDF 4 also include some PNetCDF functions

epce

NetCDF file

NetCDF files are containers for Dimensions, Variables, and

Global Attributes

File (dataset) contains the following:
path name
dimensions*
variables”
global (file-level) attribute™

data values associated with the variables.”

(*optional)

enhanced data model can contain multiple groups

group -> dataset
groups can be nested

Lo

o |
dimensions

—3

—]

variables

global attributes

epCce

<
<
~
~
o
<

NetCDF file

netcdf pres temp 4D

dimensions:

variables:

data:

}
‘ archenr

level = 2 ;
latitude = 6 ;
longitude = 12 ;
time = UNLIMITED ;

float latitude (latitude);

latitude:units = "degrees north" ;
float longitude(longitude) ;
longitude:units = "degrees east" ;
float pressure (time, level, latitude, longitude) ;
pressure:units = "hPa" ;
float temperature (time, level, latitude, longitude) ;
temperature:units = "celsius" ;

latitude = 25, 30, 35, 40, 45, 50 ;
longitude = -125, -120, .. ;
pressure = 900, 901, 902, .. ;
temperature = 9, 10, 11, ..;

epCce

NetCDF dimensions

Specify variable shapes, common grids, and co-ordinate

systems
Has a name and length

can be used by multiple variables
can associated with coordinate variables to identify coordinate
axes.

classic netCDF
at most one dimension can have the unlimited length (record
dimension)

enhanced netCDF

multiple dimensions can have the unlimited length.

epce

<
~
~
A
o
<

Variables
Variables define the things that hold data:

Has a name, type, shape, can have attributes, and values.
Type:
Classic NetCDF type is the external type of its data as represented on disk, i.e.
char
byte (8 bits)
short (16 bits)
int (32 bits)
float (32 bits)
double (64 bits)

Enhanced NetCDF
Adds unsigned type; ubyte, ushort, uint, uint64
Adds int64 (64 bits), string (variable-length string of characters)
User defined types

Shape:

list of dimensions.

no dimensions: a scalar variable with only one value

1 dimension: a 1-D (vector) variable

2 dimensions: a 2-D (matrix or grid) variable

Attribute:
specify properties, i.e. units

epCce

Attributes

Metadata about variables or datasets

When to use attributes
intended for metadata
for single values, strings, or

Attribute has: small 1-D arrays
« atomic access, must be
Name written or read all at once
- « values typically don't change
Type (same as variable types) After croation
Values - length specified when
C h | 1-D | created
an nave scalar or 1-U values o attributes are read whenfile is
Cannot be nested opened
temp rh .Ia%'

units=‘degreesC'
FillValue=-89.0
standard_name="air_temperature”

units='degrees_northﬂ
standard_name=‘|atitude'1

©)=rcher

Co-ordinate variables

Variable with same name as a dimension

By convention these specify physical co-ordinate (i.e. lat, lon, level,
time, etc...) associated with that dimension

Not special in NetCDF, but often interpreted by programs that use
NetCDF as special.

Allows indexing through position on dimension and matching to co-
ordinates

epcc

<
~
~
~
o
<

CDL (Common Data Language)

Human readable notation for NetCDF datasets and data
Obtain from NetCDF file using the ncdump program

netcdf example {
dimensions:
X =3 ;
y = 8 ;
variables:

float rh(x,
rh:units = "percent" ;
rh:long name = "relative humidity" ;

// global attributes
:title = "simple example,

data:
rh =
2, 3, 5, 7, 11,
23, 29, 31, 37,
59, 61, 67, 71,

‘ archenr

// example of CDL notation

lacks some conventions" ;

epCce

NetCDF utilities

ncdump

Produce CDL version of NetCDF file

Dump everything, or subset, or just metadata, show indices in C or FORTRAN
order, efc...

ncgen
Generate NetCDF file from CDL version
Generate C, FORTRAN, or Java program which would produce the NetCDF file
ncdump and ncgen let you edit NetCDF files manually, or create the
program structure that will read/write a NetCDF file in the format you
desire automatically
nccopy
Copy NetCDF file to new file
Can compress and change file format (i.e. classic to enhanced)
nc-config
Generate flags necessary to link a program with NetCDF, i.e.:
cc nc-config --cflags myapp.c -o myapp nc-config --libs’
£f95 "nc-config --fflags vyrapp.f -o yrapp nc-config --flibs"

Q) orcrer epcc

NetCDF programming interfaces

NetCDF APIs

C, FORTRAN 77, FORTRAN 90, C++, Perl, Java, Python, Ruby,
NCL, Matlab, Objective C, Ada, R

Some of these are third party

C interface is used as the core of all but the Java interface

<
<
~
~
o
<

epcc

C APl example

#include <netcdf.h>

int ncid, x dimid, y dimid, varid;

int dimids[NDIMS];
int data out[NX] [NY];

if ((retval = nc create (FILE NAME, NC CLOBBER,
printf ("Error: %s\n", nc strerror (retval));

exit (1) ;
}

nc _def dim(ncid, "x", NX, &x dimid);
nc def dim(ncid, "y", NY, &y dimid);

dimids[0] = x dimid;
dimids[1l] = y dimid;

nc def var(ncid, "data", NC INT,

nc_enddef (ncid)) ;
nc_put var int(ncid, varid,
nc close (ncid)

archer

NDIMS,dimids,

&data out[0][0]);

&ncid))) {

&varid) ;

epCce

FO0 APl example

use netcdf

integer :: ncid, varid, dimids (NDIMS)

integer :: x dimid, y dimid

call check(nf90 create(FILE NAME, NF90 CLOBBER,
call check(nf90 def dim(ncid, "x", NX, x dimid)
call check(nf90 def dim(ncid, "y", NY, y dimid)
dimids = / y dimid, x dimid /)

(
(
(
(
call check(nf90 def var (ncid, "data", NF90 INT,
(
(
(

call check(nf90 enddef (ncid))
call check(nf90 put var(ncid, varid, data out)
call check(nf90 close(ncid))
contains
subroutine check (status)
integer, intent (in) :: status

if (status /= nf90 noerr) then
print *, trim(nf90 strerror(status))
stop "Stopped"
end 1f
end subroutine check

‘ archenr

ncid))

dimids, wvarid)

)

epCce

)

Java APl example

import ucar.maZ2.*;
import ucar.nc2.*;
NetcdfFileWriter dataFile = null;

try {
dataFile = NetcdfFileWriter.createNew (NetcdfFileWriter.Version.netcdf3,
filename) ;
Dimension xDim = dataFile.addDimension (null, "x", NX);
Dimension yDim = dataFile.addDimension (null, "y", NY);
List<Dimension> dims = new ArrayList<>();

dims.add(xDim) ;
dims.add(yDim) ;

Variable dataVariable = dataFile.addVariable(null, "data", DataType.INT,
dims) ;

dataFile.create () ;
dataFile.write (dataVariable, dataOut) ;
} catch (IOException e) {
e.printStackTrace () ;
} catch (InvalidRangeException e) {
e.printStackTrace () ;
} finally {
if (null != dataFile)
try {
dataFile.close();
} catch (IOException ioe) {
ioe.printStackTrace () ;

}

‘ archenr

epCce

Python APl example

#from netCDF4 classic import Dataset
#from numpy import arange, dtype
nx = 6; ny = 12

ncfile = Dataset('simple xy.nc','w')
data out = arange (nx*ny) # 1d array
data out.shape = (nx,ny) # reshape to 2d array.

ncfile.createDimension ('x"', nx)
ncfile.createDimension ('y',ny)

data =
ncfile.createVariable('data',dtype('int32"'") .char, ('x"', "'
v'))

datal[:] = data out

ncfile.close()
print '*** SUCCESS writing example file simple xy.nc!'

Q) -rcre epcc

C++ APl example

#include <netcdf>
using namespace netCDF;
using namespace netCDF::exceptions;

try
{
NcFile dataFile ("simple xy.nc", NcFile::replace);
NcDim xDim = dataFile.addDim("x", NX);
NcDim yDim = dataFile.addDim("y", NY);

vector<NcDim> dims;
dims.push back (xDim);
dims.push:back(yDim);
NcVar data = dataFile.addVar("data", ncInt, dims);
data.putVar (dataOut);
return O;

}

catch (NcExceptioné& e)

{e.what () ;

return NC ERR;

}

‘ archenr

High-performance NetCDF

Enhanced NetCDF (version 4 and beyond)
Built on HDF5 for parallel/high performance /O
Files need to be stored in HDF5 format

#include "netcdf.h"
#include "hdf5.h"
MPI Comm comm = MPI COMM WORLD;
MPI Info info = MPI_ INFO NULL;
int ncid, vlid, dimids[NDIMS];
size t start[NDIMS], count[NDIMS];
res = nc_create par (FILE, NC NETCDF4|NC MPIIO, comm, info, &ncid)l
res =nc_def dim(ncid, "d1", DIMSIZE, dimids);
res = nc_def dim(ncid, "d2", DIMSIZE, &dimids[1];

res = nc_def var(ncid, "v1", NC_INT, NDIMS, dimids, &v1id);
res = nc_enddef (ncid) ;

start[0] = mpi rank * DIMSIZE/mpi size;

start[1] = 0;

count [0] = DIMSIZE/mpi size;

count[1l] = DIMSIZE;

res =nc_var par access(ncid, vlid, NC INDEPENDENT) ;

res nc_put vara int(ncid, vlid, start, count, &data[mpi rank*QTR DATA]);
res = nc_close (ncid);

MPI Finalize();

‘ archenr

epCce

Parallel NetCDF

PNetCDF

Separate library, add parallel 1/O library to support parallel 1/O in
NetCDF (CDF-1 and CDF-2)

Also supports extended CDF-2 (CDF-5)

]S)nly functionality that will support parallel 1/O for NetCDF format
lles

Some PnetCDF functionality also integrated into later versions of
NetCDF 4

ret = ncmpi create(MPI COMM WORLD, argv[1l],
NC_CLOBBER |NC_64BIT_OFFSET,MPI_INFO_NULL, &ncfile) ;

ret = ncmpi def dim(ncfile, "dl", nprocs, &dimid);

ret = ncmpi def var (ncfile, "vl1", NC INT, ndims, &dimid, &varidl);
ret = ncmpi def var (ncfile, "v2", NC INT, ndims, &dimid, &varid2);
ret = ncmpi put att text (ncfile, NC GLOBAL, "string", 13, buf);

ret = ncmpi enddef(ncfile);

ret = ncmpli put vara int all(ncfile, wvaridl, &start, é&count, &data);
ret = ncmpi put vara int all(ncfile, varid2, é&start, &count, &data);
ret = ncmpi close (ncfile);

MPI Finalize();

Q) =rcre epcc

NetCDF on ARCHER

We have multiple versions of NetCDF on ARCHER all
available through modules:
NetCDF version 4 (Serial NetCDF)
module: cray-netcdf: versions: 4.3.3.1, 4.3.2

NetCDF version 4 built with HDF5 parallel functionality
module:cray-netcdf-ndfSparallel: versions: 4.3.3.1 4.3.2, 4.3.1, 4.3.2

Parallel NetCDF (Separate parallel library that can write NetCDF
files in parallel)

module: cray-parallel-netcdf: versions: 1.6.1, 1.5.0

NetCDF v4 for use with Python
module: pc-netcdf4-python: 1.1.0, 1.1.5-python3

epce

<
~
~
~
o
<

Performance

Time (seconds)

01

0.01

Results of the /O benchmark for MPI-10, netCDF 4.0 and HDF5

T |\III||

T T TTTTI

T T TTTTT

@®—@ Total runtime - netCDF 4.0
B—M Setup time - netCDF 4.0
49— /O time - netCDF 4.0
A—A nfo0_put_var() time - netCDF 4.0
GC—>5 Total runtime - MPI-IO

[F—+F] Setup time - MPI-IO

A—A |0 time - MPI-IO

S—< mpi_file_write_all() time - MPI-IO
@—® Total runtime - HDF5

I—7*d Setup time - HDFS

©O—© /O time - HDF5

A—A h5dwrite_f time - HDFS

I IIIIIHl | II\IIIIl 1 \II[IIIl | |

1 III\HIl

10

100 1000
Number of processors (cores)

Performance — HDF5 vs MPI-I/O

Time (seconds)

Slowest I/0O Performance on HPC-FF (using maximum Lustre striping)

1000 — . —
100 |- THLL X __
/é\
.
AR
O
10 o]
HDF5: 10GB Max Stripe ——+—
HDF5: 100GB Max Stripe
HDF5: 200GB Max Stripe - - --
MPI-1/0: 10GB Max Stripe &
MPI-1/0: 100GB Max Stripe
. . MPI-II/O: 200GB Max Stripe
10 100 1000 10000

Number of Processes

archenr

epCceC

What to use?

This all assumes you are interested in parallel computing

If raw performance is biggest issue for you
MPI-1/0O

If metadata/storage format is biggest issue for you
HDF5

If you want to integrate with earth science tools
NetCDF

epcc

<
<
~
~
o
<

Further Reading

Introduction to HDF5
www. hdfgroup.org/HDF5/doc/H5.intro.html

HDF5 User Guide
www. hdfgroup.org/HDF5/doc/UG/index.html

HDF5 Reference Manual
www. hdfgroup.org/HDF5/doc/RM/RM_HSFront.html

Introduction to Scientific I/0

http://www.nersc.gov/users/training/online-tutorials/introduction-to-
scientific-i-o/

epcc

<
~
~
~
o
<

Acknowledgements & Re Use

The presentation was compiled by Adam Carter and is derived from

presentations written by Adam Carter and Adrian Jackson for EPCC
at The University of Edinburgh

© 2015-2016 The University of Edinburgh

You are welcome to reuse this presentation (or parts thereof) under the terms
of CC-BY-NC-SA

Portions of this presentation are based on the HDF5 documentation
© 2006-2014 The HDF Group
© 1998-2006 The Board of Trustees of the University of lllinois
Used as permitted by the license, which also allows reuse of this presentation.
Details at http://www.hdfgroup.org/HDF5/doc/Copyright.html.
Portions of the NetCDF material (including images) are taken from
unidata 2010 NetCDF tutorial:

http://www.unidata.ucar.edu/software/netcdf/workshops/2010/

epce

HDFS Tutorial

C version:
http://www2.epcc.ed.ac.uk/~amrey/ARCHER_ Data Management/

Python version:
http://www2.epcc.ed.ac.uk/~amrey/FDM_2015/Python/

Don’t forget to module 1load anaconda

epcc

<
~
~
~
o
<

