
Dr David Henty

HPC Training and Support Manager

d.henty@epcc.ed.ac.uk

+44 131 650 5960

Advanced Parallel

Programming

Basic MPI-IO Calls

09/12/2015 MPI-IO 3: Basic MPI-IO Calls 2

Overview

• Lecture will cover

– MPI-IO model

– basic file handling routines

– setting the file view

– achieving performance

http://www.epcc.ed.ac.uk/

09/12/2015 MPI-IO 3: Basic MPI-IO Calls 3

Comparing MPI-IO and Master IO

• Have so far defined datatypes appropriate for each process

– and used them to do multiple sends from a master

• This requires a buffer to hold entire file on master

– not scalable to many processes due to memory limits

• MPI-IO model

– each process defines the datatype for its section of the file

– these are passed into the MPI-IO routines

– data is automatically read and transferred directly to local memory

– there is no single large buffer and no explicit master process

http://www.epcc.ed.ac.uk/

09/12/2015 MPI-IO 3: Basic MPI-IO Calls 4

MPI-IO Approach

• Four stages

– open file

– set file view

– read or write data

– close file

• All the complexity is hidden in setting the file view

– this is where the derived datatypes appear

• Write is probably more important in practice than read

– but exercises concentrate on read

– makes for an easier progression from serial to parallel IO examples

http://www.epcc.ed.ac.uk/

09/12/2015 MPI-IO 3: Basic MPI-IO Calls 5

Opening a File

MPI_File_open(MPI_Comm comm, char *filename, int amode,

 MPI_Info info, MPI_File *fh)

MPI_FILE_OPEN(COMM, FILENAME, AMODE, INFO, FH, IERR)

CHARACTER*(*) FILENAME

INTEGER COMM, AMODE, INFO, FH, IERR

• Attaches a file to the File Handle

– use this handle in all future IO calls

– analogous to C file pointer or Fortran unit number

• Routine is collective across the communicator

– must be called by all processes in that communicator

• Access mode specified by amode

– common values are: MPI_MODE_CREATE, MPI_MODE_RDONLY,
MPI_MODE_WRONLY, MPI_MODE_RDWR

http://www.epcc.ed.ac.uk/

09/12/2015 MPI-IO 3: Basic MPI-IO Calls 6

Examples

MPI_File fh;

int amode = MPI_MODE_RDONLY;

MPI_File_open(MPI_COMM_WORLD, “data.in”, amode,

 MPI_INFO_NULL, &fh);

integer fh

integer amode = MPI_MODE_RDONLY

call MPI_FILE_OPEN(MPI_COMM_WORLD, ‘data.in’, amode,

 MPI_INFO_NULL, fh, ierr)

• Must specify create as well as write for new files

 int amode = MPI_MODE_CREATE | MPI_MODE_WRONLY;

 integer amode = MPI_MODE_CREATE + MPI_MODE_WRONLY

– will return to the info argument later

http://www.epcc.ed.ac.uk/

09/12/2015 MPI-IO 3: Basic MPI-IO Calls 7

Closing a File

MPI_File_close(MPI_File *fh)

MPI_FILE_CLOSE(FH, IERR)

INTEGER FH, IERR

• Routine is collective across the communicator

– must be called by all processes in that communicator

http://www.epcc.ed.ac.uk/

09/12/2015 MPI-IO 3: Basic MPI-IO Calls 8

Reading Data

MPI_File_read_all(MPI_File fh, void *buf, int count,

 MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_READ_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERR)

 INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERR

• Reads count objects of type datatype from the file on each process

– this is collective across the communicator associated with fh

– similar in operation to C fread or Fortran read

• No offsets into the file are specified in the read

– but processes do not all read the same data!

– actual positions of read depends on the process’s own file view

• Similar syntax for write

http://www.epcc.ed.ac.uk/

09/12/2015 MPI-IO 3: Basic MPI-IO Calls 9

Setting the File View

int MPI_File_set_view(MPI_File fh, MPI_Offset disp,

 MPI_Datatype etype, MPI_Datatype filetype,

 char *datarep, MPI_Info info);

MPI_FILE_SET_VIEW(FH, DISP, ETYPE,

 FILETYPE, DATAREP, INFO, IERROR)

INTEGER FH, ETYPE, FILETYPE, INFO, IERROR

CHARACTER*(*) DATAREP

INTEGER(KIND=MPI_OFFSET_KIND) DISP

• disp specifies the starting point in the file in bytes

• etype specifies the elementary datatype which is the building block of the file

• filetype specifies which subsections of the global file each process accesses

• datarep specifies the format of the data in the file

• info contains hints and system-specific information – see later

http://www.epcc.ed.ac.uk/

09/12/2015 MPI-IO 3: Basic MPI-IO Calls 10

File Views

• Once set, the process only sees the data in the view

– data starts at different positions in the file depending on the displacement

and/or leading gaps in fixed datatype

– can then do linear reads – holes in datatype are skipped over

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

rank 0

(0,0)

rank 1

(0,1)

rank 3

(1,1)

rank 2

(1,0)

rank 1 filetype

rank 1 view of file 3 4 7 8

1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 5 global file

(fixed type, disp = 0)

http://www.epcc.ed.ac.uk/

09/12/2015 MPI-IO 3: Basic MPI-IO Calls 11

Filetypes Should Tile the File

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

rank 0

(0,0)

rank 1

(0,1)

rank 3

(1,1)

rank 2

(1,0)

rank 0

rank 1

rank 3

rank 2

http://www.epcc.ed.ac.uk/

09/12/2015 MPI-IO 3: Basic MPI-IO Calls 12

Data Representation

• datarep is a string that can be

– “native”

– “internal”

– “external32”

• Fastest is “native”

– raw bytes are written to file exactly as in memory

• Most portable is “external32”

– should be readable by MPI-IO on any platform

• Middle ground is “internal”

– portability depends on the implementation

• I would recommend “native”

– convert file format by hand as and when necessary

http://www.epcc.ed.ac.uk/

09/12/2015 MPI-IO 3: Basic MPI-IO Calls 13

Choice of Parameters (1)

• Many different combinations are possible

– choices of displacements, filetypes, etypes, datatypes, ...

• Simplest approach is to set disp = 0 everywhere

– then specify offsets into files using fixed datatypes when setting view

– non-zero disp could be useful for skipping global header (eg metadata)

– disp must be of the correct type in Fortran (NOT a default integer)

– CANNOT specify ‘0’ for the displacement: need to use a variable

 INTEGER(KIND=MPI_OFFSET_KIND) DISP = 0

 CALL MPI_FILE_SET_VIEW(FH, DISP, ...)

• I would recommend setting the view with fixed datatypes

– and zero displacements

http://www.epcc.ed.ac.uk/

09/12/2015 MPI-IO 3: Basic MPI-IO Calls 14

Choice of Parameters (2)

• Can also use floating datatypes in the view

– each process then specifies a different, non-zero value of disp

• Problems

– disp is specified in bytes so need to know the size of the etype

– files are linear 1D arrays

– need to do a calculation for displacement of element of 2D array

– something like i*NY + j (in C) or j*NX + i (in Fortran)

– then multiply by the number of bytes in a float or REAL

• Using vector types and displacements is one of the exercises

• etype is normally something like MPI_REAL or MPI_FLOAT

– datatype in read/write calls is usually the same as the etype

– however, can play some useful tricks (see extra exercises re halos)

http://www.epcc.ed.ac.uk/

09/12/2015 MPI-IO 3: Basic MPI-IO Calls 15

Collective IO

• For read and write, “_all” means operation is collective

– all processes attached to the file are taking part

• Other IO routines exist which are individual (delete “_all”)

– functionality is the same but performance will be slower

– collective routines can aggregate reads/writes for better performance

Combine ranks 0 and 1 for single

contiguous read/write to file

Combine ranks 2 and 3 for single

contiguous read/write to file

http://www.epcc.ed.ac.uk/

09/12/2015 MPI-IO 3: Basic MPI-IO Calls 16

INFO Objects and Performance

• Used to pass optimisation hints to MPI-IO

– implementations can define any number of allowed values

– these are portable in as much as they can be ignored!

– can use the default value info = MPI_INFO_NULL

• Info objects can be created, set and freed

– MPI_Info_create

– MPI_Info_set

– MPI_Info_free

– see man pages for details

• Using appropriate values may be key to performance

– eg setting buffer sizes, blocking factors, number of IO nodes, ...

– but is dependent on the system and the MPI implementation

– need to consult the MPI manual for your machine

http://www.epcc.ed.ac.uk/

Summary

• MPI-IO calls deceptively simple

• User must define appropriate filetypes so file view is correct

on each process

– this is the difficult part!

• Use collective calls whenever you can

– enables IO library to merge reads and writes

– enables a smaller number of larger IO operations from/to disk

09/12/2015 MPI-IO 3: Basic MPI-IO Calls 17

http://www.epcc.ed.ac.uk/

