
Traffic Model Solution
Cellular Automaton Exercise

Traffic simulation

n n+1 n-1 n n+1 n-1
current value new value new value

n n
current value

• Update rules depend on:

• state of cell

• state of nearest neighbours in both directions

State Table
• If Rt(i) = 0, then Rt+1(i) is given by:

• Rt(i-1) = 0 Rt(i -1) = 1

• Rt(i+1) = 0 0 1

• Rt(i+1) = 1 0 1

• If Rt(i) = 1, then Rt+1(i) is given by:

• Rt(i-1) = 0 Rt(i -1) = 1

• Rt(i+1) = 0 0 0

• Rt(i+1) = 1 1 1

Pseudo Code

 declare arrays old(i) and new(i), i = 0,1,...,N,N+1

 initialise old(i) for i = 1,2,...,N-1,N (eg randomly)

 loop over iterations

 set old(0) = old(N) and set old(N+1) = old(1)

 loop over i = 1,...,N

 if old(i) = 1

 if old(i+1) = 1 then new(i) = 1 else new(i) = 0

 if old(i) = 0

 if old(i-1) = 1 then new(i) = 1 else new(i) = 0

 end loop over i

 set old(i) = new(i) for i = 1,2,...,N-1,N

 end loop over iterations

5

Threads Parallelisation

• Load balance not an issue
• updates take equal computation regardless of state of road

• split the road into equal pieces of size N/P

• For each piece
• rule for cell i depends on cells i-1 and i+1

• can parallelise as we are updating new array based on old

• Synchronisation required
• to ensure threads do not start until boundary data is updated

• to produce a global sum of the number of cars that move

• to ensure that all threads have finished before next iteration

6

Shared Variables Parallelisation
 serial: initialise old(i) for i = 1,2,...,N-1,N

 serial: loop over iterations

 serial: set old(0) = old(N) and set old(N+1) = old(1)

 parallel: loop over i = 1,...,N

 if old(i) = 1

 if old(i+1) = 1 then ...

 if old(i) = 0

 if old(i-1) = 1 then ...

 end loop over i

 synchronise

 parallel: set old(i) = new(i) for i = 1,2,...,N-1,N

 synchronise

 end loop over iterations

• private: i; shared: old, new, N
• reduction operation to compute number of moves

Message-Passing Strategy (1)
Broadcast data

to 2 processes:

Split calculation

between 2 processes:

Process 1 Process 2

•Globally resynchronise all data after each move

• a replicated data strategy

•Every process stores the entire state of the calculation

• e.g. any process can compute total number of moves

Parallelisation Strategy (2)

Scatter data

between 2 processes:

distributed data strategy

•Internal cells can be updated independently.

•Must communicate with neighbouring processes to update edge cells.

•Sum local number of moves on each process to obtain total number of

moves at each iteration.

Split calculation

between 2 processes:
Process 1 Process 2

•Each process must know which part of roadway it is updating.

•Synchronise at completion of each iteration and obtain total

number of moves.

Parallelisation

• Load balance not an issue
• updates take equal computation regardless of state of road

• split the road into equal pieces of size N/P

• For each piece
• rule for cell i depends on cells i-1 and i+1

• the N/P - 2 interior cells can be updated independently in parallel

• however, the edge cells are updated by other processors

• similar to having separate rules for boundary conditions

• Communications required
• to get value of edge cells from other processors

• to produce a global sum of the number of cars that move

Message Passing Parallelisation

local moves = 2 local moves = 1

global moves = 3

2 processes,

add halos

copy data

to halos

update

interior cells

