
Parallel Models
Different ways to exploit parallelism

Outline

• Shared-Variables Parallelism

• threads

• shared-memory architectures

• Message-Passing Parallelism

• processes

• distributed-memory architectures

• Practicalities

• compilers

• libraries

• usage on real HPC architectures

Shared Variables

Threads-based parallelism

Threaded Programming Model
• Programming model for shared memory based on threads

• threads are like processes, except that threads can share memory with

each other (as well as having private memory)

• Shared data can be accessed by all threads

• Private data can only be accessed by the owning thread

• Different threads can follow different flows of control through

the same program

• each thread has its own program counter

• Usually run one thread per CPU/core

• but could be more

• can have hardware support for multiple threads per core

5

Threads (cont.)

PC PC PC Private data Private data Private data

Shared data

Thread 1 Thread 2 Thread 3

Shared-memory concepts

• Have already covered basic concepts

• threads can all see data of parent process

• can run on different cores

• potential for parallel speedup

Analogy

• One very large whiteboard in a two-person office

• the shared memory

• Two people working on the same problem

• the threads running on different cores attached to the memory

• How do they collaborate?

• working together

• but not interfering

• Also need private data

my

data

shared

data
my

data

Thread 1 Thread 2

mya=23

mya=a+1

23

23 24

Program

Private

data

Shared

data

a=mya

Thread Communication

9

Synchronisation

• By default, threads execute asynchronously

• Each thread proceeds through program instructions independently of other

threads

• This means we need to ensure that actions on shared variables occur in

the correct order: e.g.

thread 1 must write variable A before thread 2 reads it,

or

thread 1 must read variable A before thread 2 writes it.

• Note that updates to shared variables (e.g. a = a + 1) are not atomic!
• If two threads try to do this at the same time, one of the updates may get

overwritten.

Synchronisation example
Thread 1 Thread 2

load a
Program

CPU

Registers

Memory

10

10

10 11 11

11 11

add a 1

store a

load a

add a 1

store a

Synchronisation

• Synchronisation crucial for shared variables approach

• thread 2’s code must execute after thread 1

• Most commonly use global barrier synchronisation

• other mechanisms such as locks also available

• Writing parallel codes relatively straightforward

• access shared data as and when its needed

• Getting correct code can be difficult!

12

Parallel loops

• Loops are the main source of parallelism in many applications.

• If the iterations of a loop are independent (can be done in any order) then

we can share out the iterations between different threads.

• e.g. if we have two threads and the loop

 for (i=0; i<100; i++){

 a[i] += b[i];

 }

 we could do iteration 0-49 on one thread and iterations 50-99 on the

other.

• Can think of an iteration, or a set of iterations, as a task.

Specific example
• Computing asum = a0+ a1 + … a7

• shared:

• main array: a[8]

• result: asum

• private:

• loop counter: i

• loop limits: istart, istop

• local sum: myasum

• synchronisation:

• thread0: asum += myasum

• barrier

• thread1: asum += myasum

loop: i = istart,istop

 myasum += a[i]

end loop

asum

asum=0

14

Reductions
• A reduction produces a single value from associative operations such as

addition, multiplication, max, min, and, or.

 asum = 0;

 for (i=0; i<n; i++)

 asum += a[i];

• Only one thread at a time updating asum removes all parallelism

• each thread accumulates own private copy; copies reduced to give final result.

• if the number of operations is much larger than the number of threads, most of

the operations can proceed in parallel

• Want common patterns like this to be automated

• not programmed by hand as in previous slide

Hardware

Memory

Processor

Shared Bus

Processor Processor Processor Processor

• Needs support of a shared-memory architecture

Threads: Summary

• Shared blackboard a good analogy for thread parallelism

• Requires a shared-memory architecture

• in HPC terms, cannot scale beyond a single node

• Threads operate independently on the shared data

• need to ensure they don’t interfere; synchronisation is crucial

• Threading in HPC usually uses OpenMP directives

• supports common parallel patterns such as reductions

• e.g. loop limits computed by the compiler

• e.g. summing values across threads done automatically

Message Passing

Process-based parallelism

Analogy

• Two whiteboards in different single-person offices

• the distributed memory

• Two people working on the same problem

• the processes on different nodes attached to the interconnect

• How do they collaborate?

• to work on single problem

• Explicit communication

• e.g. by telephone

• no shared data

my

data

my

data

a=23 Recv(1,b)
Process 1 Process 2

23

23

24

23

Program

Data

Send(2,a) a=b+1

Process communication

Synchronisation

• Synchronisation is automatic in message-passing

• the messages do it for you

• Make a phone call …

• … wait until the receiver picks up

• Receive a phone call

• … wait until the phone rings

• No danger of corrupting someone else’s data

• no shared blackboard

Communication modes

• Sending a message can either be synchronous or

asynchronous

• A synchronous send is not completed until the message

has started to be received

• An asynchronous send completes as soon as the

message has gone

• Receives are usually synchronous - the receiving process

must wait until the message arrives

Synchronous send

• Analogy with faxing a letter.

• Know when letter has started to be received.

Asynchronous send

• Analogy with posting a letter.

• Only know when letter has been posted, not when it has been

received.

Point-to-Point Communications

• We have considered two processes

• one sender

• one receiver

• This is called point-to-point communication

• simplest form of message passing

• relies on matching send and receive

• Close analogy to sending personal emails

Collective Communications

• A simple message communicates between two processes

• There are many instances where communication between

groups of processes is required

• Can be built from simple messages, but often

implemented separately, for efficiency

Broadcast: one to all communication

Broadcast

• From one process to all others

8

8 8

8

8

8

Scatter

• Information scattered to many processes

0 1 2 3 4 5

0

1

3

4

5

2

Gather

• Information gathered onto one process

0 1 2 3 4 5

0

1

3

4

5

2

Reduction Operations

• Combine data from several processes to form a single result

Strike?

Reduction

• Form a global sum, product, max, min, etc.

0

1

3

4

5

2

15

Hardware

• Natural map to

distributed-memory

• one process per

processor-core

• messages go over

the interconnect,

between nodes/OS’s

Processor

Processor

Processor

Processor

Processor

Processor

Processor
Processor

Interconnect

Programming Models

Control flow
Variables

Arrays

Human-readable

Serial Programming

Concepts

if/then/else

Languages
Java

Fortran
struct

Python
C/C++

Subroutines

Implementations

icc pgcc -fast

crayftn

gcc -O3

OO

Processes

SPMD

Concepts

Libraries

Implementations

Intel MPI

Message-Passing

Parallel Programming

Groups Send/Receive

Collectives

javac

MPI

MPICH2

OpenMPI

Cray MPI

IBM MPI craycc

MPI_Init()

SPMD

• Most message passing programs use the Single-

Program-Multiple-Data (SPMD) model

• All processes run (their own copy of) the same program

• Each process has a separate copy of the data

• To make this useful, each process has a unique identifier

• Processes can follow different control paths through the

program, depending on their process ID

• Usually run one process per processor / core

Launching a Message-Passing Program

• Write a single piece of source code
• with calls to message-passing functions such as send / receive

• Compile with a standard compiler and link to a message-
passing library provided for you
• both open-source and vendor-supplied libraries exist

• Run multiple copies of same executable on parallel machine
• each copy is a separate process

• each has its own private data completely distinct from others

• each copy can be at a completely different line in the program

• Running is usually done via a launcher program
• “please run N copies of my executable called program.exe”

Issues

• Sends and receives must match

• danger of deadlock

• program will stall (forever!)

• Possible to write very complicated programs, but …

• most scientific codes have a simple structure

• often results in simple communications patterns

• Use collective communications where possible

• may be implemented in efficient ways

Summary (i)

• Messages are the only form of communication
• all communication is therefore explicit

• Most systems use the SPMD model
• all processes run exactly the same code

• each has a unique ID

• processes can take different branches in the same codes

• Basic communications form is point-to-point
• collective communications implement more complicated patterns

that often occur in many codes

Processes: Summary

• Processes cannot share memory

• ring-fenced from each other

• analogous to white boards in separate offices

• Communication requires explicit messages

• analogous to making a phone call, sending an email, …

• synchronisation is done by the messages

• Almost exclusively use Message-Passing Interface

• MPI is a library of function calls / subroutines

Practicalities
• 8-core machine might only have 2

nodes

• how do we run MPI on a real HPC
machine?

• Mostly ignore architecture

• pretend we have single-core nodes

• one MPI process per processor-core

• e.g. run 8 processes on the 2 nodes

• Messages between processes on
the same node are fast

• but remember they also share access
to the network

Interconnect

Message Passing on Shared Memory

• Run one process per core

• don’t directly exploit shared memory

• analogy is phoning your office mate

• actually works well in practice!

my

data

my

data

• Message-passing

programs run by a

special job launcher

• user specifies #copies

• some control over

allocation to nodes

Summary

• Shared-variables parallelism

• uses threads

• requires shared-memory machine

• easy to implement but limited scalability

• in HPC, done using OpenMP compilers

• Distributed memory

• uses processes

• can run on any machine: messages can go over the interconnect

• harder to implement but better scalability

• on HPC, done using the MPI library

