Parallel Models

Different ways to exploit parallelism

EPSRC

Sl s
AP
o - fexy

VO C

W

I
Outline

Shared-Variables Parallelism

threads

shared-memory architectures
Message-Passing Parallelism

processes

distributed-memory architectures
Practicalities

compilers

libraries

usage on real HPC architectures

epcc

Shared Variables

Threads-based parallelism

\vl\“lv‘F
<<»x 4)4’,
ARE, 7
archer e OCC| &
. =l .
ij\ 'JT‘ ;;N
N 4
4,)1_\]‘,,\,\“2‘

N
Threaded Programming Model

Programming model for shared memory based on threads

threads are like processes, except that threads can share memory with
each other (as well as having private memory)

Shared data can be accessed by all threads

Private data can only be accessed by the owning thread

Different threads can follow different flows of control through
the same program

each thread has its own program counter

Usually run one thread per CPU/core

but could be more
can have hardware support for multiple threads per core

epcc

Qf() N
=
==
o)
A

Threads (cont.)

Thread 1

Thread 2

Thread 3

UPC

Private data '

— i
Q;e data?tDC Private data

Shared data

W

S

N
Shared-memory concepts

Have already covered basic concepts
threads can all see data of parent process
can run on different cores
potential for parallel speedup I

Po(To)

epcc

sz<» i
=
==
o)
A

N
Analogy

One very large whiteboard in a two-person office
the shared memory

Two people working on the same problem
the threads running on different cores attached to the memory

How do they collaborate? shared
working together
but not interfering

Also need private data

~lepcc

sz<» i
=
==
o
A

Thread Communication

Thread 1 Thread 2
Program mya=23

a=mvya mya=a-+1
Private 3 4
data S
Shared 23
data

epcc

&

~ e
o

<

Synchronisation

By default, threads execute asynchronously
Each thread proceeds through program instructions independently of other
threads
This means we need to ensure that actions on shared variables occur in
the correct order: e.qg.

thread 1 must write variable A before thread 2 reads it,

or
thread 1 must read variable A before thread 2 writes it.

Note that updates to shared variables (e.g. a = a + 1) are not atomic!

If two threads try to do this at the same time, one of the updates may get
overwritten.

epcc

Synchronisation example

Thread 1 Thread 2
:P load a load a
rogram add a 1 add a 1
store a store a
CPU 11 11
Registers <
e
0‘. bae®
11
Memory

N
Synchronisation

Synchronisation crucial for shared variables approach
thread 2's code must execute after thread 1

Most commonly use global barrier synchronisation
other mechanisms such as locks also available

Writing parallel codes relatively straightforward
access shared data as and when its needed

Getting correct code can be difficult!

epce

Qf() N
=
==
o)
A

N
Parallel loops

Loops are the main source of parallelism in many applications.

If the iterations of a loop are independent (can be done in any order) then
we can share out the iterations between different threads.

e.g. if we have two threads and the loop
for (i=0; i<100; i++) {
af[i] += b[1i];
}

we could do iteration 0-49 on one thread and iterations 50-99 on the
other.

Can think of an iteration, or a set of iterations, as a task.

epcc

N
Specific example

Computing asum = a,+ a; + .. a,

Shared: asum=0

main array: a [8] Py

result: asum

' : Po(To) Po(T,)
private: ° °

loop counter: i Gg a,

loop limits: istart, istop 9 loop: i =+ista[ﬂ_f']cfist°P as

myasum += al[i

local sum: myasum a, end loop a

synchronisation: AN ! v | @

thread0: asum += myasum

barrier
threadl: asum += myasum

asum

©)=rcher epcc

Reductions

A reduction produces a single value from associative operations such as
addition, multiplication, max, min, and, or.

asum = 0;

for (i=0; i<n; i++)

asum += a[i];

Only one thread at a time updating asum removes all parallelism
each thread accumulates own private copy; copies reduced to give final result.

if the number of operations is much larger than the number of threads, most of
the operations can proceed in parallel

Want common patterns like this to be automated
not programmed by hand as in previous slide

epce

Hardware

Needs support of a shared-memory architecture

|
H [[H

—J |C—3

N
Threads: Summary

Shared blackboard a good analogy for thread parallelism

Requires a shared-memory architecture
In HPC terms, cannot scale beyond a single node

Threads operate independently on the shared data
need to ensure they don't interfere; synchronisation is crucial

Threading in HPC usually uses OpenMP directives
supports common parallel patterns such as reductions
e.g. loop limits computed by the compiler
e.g. summing values across threads done automatically

epce

Qf() N
=
==
o)
A

Message Passing

Process-based parallelism

\N]\./E
<<»x 4)4’,
< i A
archer SPCC| &2
. Nel .
ij\ 'JT ;;N
) =
4,)1-\]%\1\%

Analogy

Two whiteboards in different single-person offices
the distributed memory

Two people working on the same problem
the processes on different nodes attached to the interconnect

How do they collaborate?
to work on single problem

Explicit communication
e.g. by telephone
no shared data

epCceC

"Zfo g
o 5
==h
o
“<

Process communication

Process 1 Process 2
— Recv (1l,Db
Program 2723 (1,0)
Send (2, a) a=b+1
23} 24
Data | |7 N
23) 23

5
N ~7 €
A
==
o
o

epce

N
Synchronisation

Synchronisation is automatic in message-passing
the messages do it for you

Make a phone call ...
... wait until the receiver picks up

Receive a phone call
... wait until the phone rings

No danger of corrupting someone else’s data
no shared blackboard

epce

Qf() N
=
==
o)
A

Communication modes

Sending a message can either be synchronous or
asynchronous

A synchronous send is not completed until the message
has started to be received

An asynchronous send completes as soon as the
message has gone

Recelives are usually synchronous - the receiving process
must wait until the message arrives

epcc

5
N ~7 €
3
==
o
o

N
Synchronous send

Analogy with faxing a letter.
Know when letter has started to be received.

N
Asynchronous send

Analogy with posting a letter.

Only know when letter has been posted, not when it has been
received.

;
N ~7 | @
~ "z

o

P

epcc

Point-to-Point Communications

We have considered two processes
one sender
one receiver

This is called point-to-point communication
simplest form of message passing
relies on matching send and receive

Close analogy to sending personal emails

epce

Collective Communications

A simple message communicates between two processes

There are many instances where communication between
groups of processes is required

Can be built from simple messages, but often
Implemented separately, for efficiency

epce

&5
qfo N7 e
3
|
o
o

Broadcast: one to all communication

pa

~
3
~
~
Q
P

o S s
~% "
@ archer epCC| &
4 %‘L ‘2;
OpneY

Broadcast

- From one process to all others

epCceC

< V77
<z -
& = ~
. i
O
“<

Scatter

- Information scattered to many processes

Gather

- Information gathered onto one process

. \\‘3
archer

Reduction Operations

Combine data from several processes to form a single result

Strike?

.
N ~7 | @
= a7
o

P

epce

Reduction

- Form a global sum, product, max, min, etc.

o e
epcc

& 7
Z i A
~ =~ o
. t
o]
<

Hardware

| |
Proces

N\

i

Processo

Processo

Natural map to
distributed-memory

one pProcess per
processor-core

messages go over
the interconnect,
between nodes/OS’s

Processo

r——
ProCcessor

)
3

Processo

N
Programming Models

Serial Programming Message-Passing

Parallel Programming

Arrays Concepts Concepts
i Processes :
Control flow VS_UETOU“”ES Groups Send/Receive
Human-readable ' 2?00 SPMD Collectives
Languages c/c++ Libraries
Python Java Eortran MP R
ni
struct if/then/else it
Implementations |mFI)JI(|93f|n§Hn;ati0nS
gcc(::r-a(l)y?tn icc pgcc -fast Intel MPI Cray MPI
craycc javac OpenMPI IBM MPI

(©)=rcher €0CC

-
SPMD

Most message passing programs use the Single-
Program-Multiple-Data (SPMD) model

All processes run (their own copy of) the same program
Each process has a separate copy of the data
To make this useful, each process has a unique identifier

Processes can follow different control paths through the
program, depending on their process ID

Usually run one process per processor / core

epcc

;
N ~7 | @
3
|
o
<

Launching a Message-Passing Program

Write a single piece of source code
with calls to message-passing functions such as send / receive

Compile with a standard compiler and link to a message-
passing library provided for you

both open-source and vendor-supplied libraries exist

Run multiple copies of same executable on parallel machine
each copy is a separate process
each has its own private data completely distinct from others
each copy can be at a completely different line in the program

Running is usually done via a launcher program
“please run N copies of my executable called program.exe”

epcc

Issues

Sends and receives must match
danger of deadlock
program will stall (forever!)

Possible to write very complicated programs, but ...
most scientific codes have a simple structure
often results in simple communications patterns

Use collective communications where possible
may be implemented in efficient ways

epce

N
Summary (i)

Messages are the only form of communication
all communication is therefore explicit

Most systems use the SPMD model
all processes run exactly the same code
each has a unique ID
processes can take different branches in the same codes

Basic communications form is point-to-point

collective communications implement more complicated patterns
that often occur in many codes

epce

N
Processes. Summary

Processes cannot share memory
ring-fenced from each other
analogous to white boards in separate offices

Communication requires explicit messages
analogous to making a phone call, sending an email, ...
synchronisation is done by the messages

Almost exclusively use Message-Passing Interface
MPI is a library of function calls / subroutines

epcc

QfO i
=
==
o)
A

Practicalities

8-core machine might only have 2
nodes

how do we run MPI on a real HPC
machine?

Mostly ignore architecture
pretend we have single-core nodes
one MPI process per processor-core
e.g. run 8 processes on the 2 nodes

Messages between processes on

the same node are fast
but remember they also share access

to the network
epCcc

Message Passing on Shared Memory

Run one Process per core
don'’t directly exploit shared memory
analogy is phoning your office mate
actually works well in practice!

Message-passing

programs run by a

special job launcher
user specifies #copies

some control over
allocation to nodes

N
Summary

Shared-variables parallelism
uses threads
requires shared-memory machine
easy to implement but limited scalability
iIn HPC, done using OpenMP compilers

Distributed memory
USes processes
can run on any machine: messages can go over the interconnect
harder to implement but better scalability
on HPC, done using the MPI library

epce

