Parallel Programming

Overview and Concepts

EPSRC

Outline

Decomposition

Geometric decomposition
Task farm

Pipeline

Loop parallelism

General parallelisation considerations

Parallel code performance metrics and evaluation

Parallel scaling models

epCce

Why use parallel programming?

It is harder than serial so why bother?

\N]\./E
<<»x /‘)4’,
<z i A
archer eoOCC| &
. Nel .
ij\ 'JT ;;N
S =
4[)1_\1\%0%

N
Why?

Parallel programming is more difficult than its sequential
counterpart

However we are reaching limitations in uniprocessor design
Physical limitations to size and speed of a single chip
Developing new processor technology is very expensive
Some fundamental limits such as speed of light and size of atoms

Parallelism is not a silver bullet
There are many additional considerations
Careful thought is required to take advantage of parallel machines

epcc

Performance

A key aim is to solve problems faster
To improve the time to solution
Enable new scientific problems to be solved

To exploit parallel computers, we need to split the program up
between different processors

|deally, would like program to run P times faster on P
pProcessors

Not all parts of program can be successfully split up

Splitting the program up may introduce additional overheads such as
communication

epcc

Parallel tasks

How we split a problem up in parallel is critical

Limit communication (especially the number of messages)
Balance the load so all processors are equally busy

Tightly coupled problems require lots of interaction
between their parallel tasks

Embarrassingly parallel problems require very little (or no)
Interaction between their parallel tasks

E.g. the image sharpening exercise

In reality most problems sit somewhere between two
extremes

epcc

5
Y ~7 | ¢
~ Ry
o
P

Decomposition

How do we split problems up to solve efficiently in parallel?

.
N ~7 | @
3
|
o
P

epce

N
Decomposition

One of the most challenging, but also most important,
decisions is how to split the problem up

How you do this depends upon a number of factors
The nature of the problem
The amount of communication required
Support from implementation technologies

We are going to look at some frequently used
decompositions

epcc

szo g
o 5]
==
o
<

N
Geometric decomposition

- Take advantage of the geometric properties of a problem

epcc| @

N
Geometric decomposition

- Splitting the problem up does have an associated cost
- Namely communication between processors
- Need to carefully consider granularity
- Aim to minimise communication and maximise computation

Granularity

Size of chunks of work

too large: litle parallelism too small: communications rule

epcc

Halo swapping

- Swap data in bulk at pre-
defined intervals -

- Often only need
Information on the
boundaries

- Many small messages
result in far greater
overhead

e
Load imbalance

Execution time determined by slowest processor

each processor should have (roughly) the same amount of work,
l.e. they should be load balanced

Assign multiple partitions per processor
Additional techniques such as work stealing available

Task farm (master worker)

Split the problem up into distinct, independent, tasks

[Master 1

[Worker 1 } [Worker 2 } [Worker 3 1 [Worker n 1
Master process sends task to a worker
Worker process sends results back to the master

The number of tasks is often much greater than the
number of workers and tasks get allocated to idle workers

epcc

N ~7 €
A
==
o
“<

L
Task farm considerations

Communication is between the master and the workers
Communication between the workers can complicate things

The master process can become a bottleneck

Workers are idle waiting for the master to send them a task or
acknowledge receipt of results

Potential solution: implement work stealing

Resilience — what happens if a worker stops responding?

Master could maintain a list of tasks and redistribute that work’s
work

epce

Qf() N
=
==
o)
A

N
Pipeline

A problem involves operating on many pieces of data in
turn. The overall calculation can be viewed as data
flowing through a sequence of stages and being operated
on at each stage.

O)) O) e A e A

~ @V o Xt A
Data | . 5 N o | Result
— 12 & 12 18 4

A A A A A

~— ~— ~— \ J \ J

Each stage runs on a processor, each processor
communicates with the processor holding the next stage

One way flow of data

epcc

QfO i
= 3
==
o)
A

N
Examples of pipeline

CPU architectures
Fetch, decode, execute, write back
Intel Pentium 4 had a 20 stage pipeline

Unix shell
I.e. cat datafile | grep “energy” | awk {print $2, $3}’

Graphics/GPU pipeline

A generalisation of pipeline (a workflow, or dataflow) is
becoming more and more relevant to large, distributed
scientific workflows

Can combine the pipeline with other decompositions

epcc

;
N ~7 | @
3
|
o
<

N
Loop parallelism

Serial programs can often be dominated by
computationally intensive loops.

Can be applied incrementally, in small steps based upon
a working code

This makes the decomposition very useful

Often large restructuring of the code is not required

Tends to work best with small scale parallelism
Not suited to all architectures
Not suited to all loops

If the runtime Is not dominated by loops, or some loops
can not be parallelised then these factors can dominate
(Amdahl’s law.)

epcc

QfO i
=
==
o)
A

Example of loop parallelism:

. int main(int argc, char *argv[]) {
const int N = 100000;
int i, a[N];

#pragma omp parallel for
(1 0; 1 < N; i++)

]

Il
o

*
[

If we ignore all parallelisation directives then should just
run in serial

Technologies have lots of additional support for tuning this

epcc

&5
qfo N7 | ¢
=
o
P

Summary

There are many considerations when parallelising code

A variety of patterns exist that can provide well known
approaches to parallelising a serial problem

You will see examples of some of these during the practical
sessions

epcc

QfO i
=
==
o)
A

