Message Passing Programming

Introduction to MPI

EPSRC

What I1s MPI?

3 \ \
Q
P

epcc| @

e
MPI| Forum

First message-passing interface standard.

Sixty people from forty different organisations.

Users and vendors represented, from the US and Europe.
Two-year process of proposals, meetings and review.
Message Passing Interface document produced in 1993

.
Q?O 7 | €
3 i
=1
o
P

epce

Implementation

MPI is a library of function/subroutine calls

MPI is not a language
There is no such thing as an MPI| compiler

The C or Fortran compiler you invoke knows nothing
about what MPI actually does
only knows prototype/interface of the function/subroutine calls

epcc

.
N ~7 @
3 %
=1
o
e

N
Goals and Scope of MP|

MPI's prime goals are:
To provide source-code portability.
To allow efficient implementation.

It also offers:
A great deal of functionality.
Support for heterogeneous parallel architectures.

epce

e
Header files

#include <mpi.h>

Fortran 77

include 'mpif.h'

Fortran 90:

use mpil

epcc

.
N ~7 @
3 %
=1
o
e

I
MPI| Function Format

C:
error = MPI Xxxxx(parameter, ...);
MPI Xxxxx (parameter, ...);

Fortran:

CALL MPI XXXXX(parameter, ..., IERROR)

epce

e
Handles

MPI controls Iits own Internal data structures.

MPI releases handles' to allow programmers to refer to
these.

C handles are of defined typedefs.
Fortran handles are INTEGERs.

.
Q?O 7 | €
2 3
=1
o
P

epcc

N
Initialising MPI

C:

int MPI Init(int *argc, char ***argv)
Fortran:

MPI INIT (IERROR)
INTEGER IERROR

Must be the first MPI procedure called.
but multiple processes are already running before MPI_Init

epce

N
MPI_Init

int main(int argc, char *argvl[])

{

MPI Init(&argc, &argv);

int main ()

{

MPI Init (NULL, NULL);

program my mpi program
integer :: 1lerror

CALL MPI INIT (IERROR)

©)=rcher epcc

N
MPI COMM WORLD

Communicators

MPI_COMM WORLD

\ NIV
40& /‘)‘f’,
< S A
= s
archer e oCC| 8
44\ -4,"\ Qlo
OrnwY

e
Rank

How do you identify different processes in a
communicator?

MPI Comm rank (MPI Comm comm, int *rank)

MPI COMM RANK (COMM, RANK, IERROR)
INTEGER COMM, RANK, IERROR

The rank is not the physical processor number.
numbering is always O, 1, 2,, N-1

epcc

MPI_Comm_rank

int rank;

MPI Comm rank (MPI COMM WORLD, &rank);

printf (“Hello from rank %d\n”, rank);

integer :: 1lerror

integer :: rank

CALL MPI COMM RANK (MPI COMM WORLD, rank, ierror)

write(*,*) ‘Hello from rank V', rank

epcc

e
Size

How many processes are contained within a
communicator?

MPI Comm size (MPI Comm comm, int *size)

MPI COMM SIZE (COMM, SIZE, IERROR)
INTEGER COMM, SIZE, IERROR

epcc

N
Exiting MPI

C:
int MPI Finalize ()

Fortran:

MPI FINALIZE (IERROR)
INTEGER IERROR

Must be the last MPI procedure called.

epcc

Aborting MP|

Aborting the execution from any processor (e.g. error
condition)

C:
int MPI Abort (MPI Comm comm,int errorcode)
Fortran:
MPI ABORT (COMM, ERRORCODE, IERROR)
INTEGER COMM, ERRORCODE, IERROR
Behaviour

will abort all processes even if only called by one process
this is the ONLY MPI routine that can have this effect
only use as a last-resort “nuclear” option!

epcc

What machine am | on?

Can be useful on a cluster
e.g. to confirm mapping of processes to nodes/processors/cores

integer namelen
character* (MPI MAX PROCESSOR NAME) :: procname

call MPI GET PROCESSOR NAME (procname, namelen, ilerror)

write(*,*) ‘rank ', rank, ' is on machine ', procname (l:namelen)

int namelen;
char procname[MPI MAX PROCESSOR NAME];

MPI Get processor name (procname, &namelen);

printf (“rank %d is on machine $%$s\n", rank, procname)

©)=rcher epcc)

Summary

Have some covered basic calls
but no explicit message-passing yet

Can still write useful programs
eg a task farm of independent jobs

Need to compile and launch parallel jobs
procedure is not specified by MPI
next lecture gives machine-specific details

epcc

o
N ~7 | ¢
3 :
iy ol |
o
P

