
Message Passing Programming

Introduction to MPI

What is MPI?

MPI Forum

• First message-passing interface standard.

• Sixty people from forty different organisations.

• Users and vendors represented, from the US and Europe.

• Two-year process of proposals, meetings and review.

• Message Passing Interface document produced in 1993

Implementation

• MPI is a library of function/subroutine calls

• MPI is not a language

• There is no such thing as an MPI compiler

• The C or Fortran compiler you invoke knows nothing

about what MPI actually does

• only knows prototype/interface of the function/subroutine calls

Goals and Scope of MPI

• MPI's prime goals are:

• To provide source-code portability.

• To allow efficient implementation.

• It also offers:

• A great deal of functionality.

• Support for heterogeneous parallel architectures.

Header files

• C:

 #include <mpi.h>

• Fortran 77:

 include 'mpif.h'

• Fortran 90:

 use mpi

MPI Function Format

• C:

 error = MPI_Xxxxx(parameter, ...);

 MPI_Xxxxx(parameter, ...);

• Fortran:

 CALL MPI_XXXXX(parameter, ..., IERROR)

Handles

• MPI controls its own internal data structures.

• MPI releases `handles' to allow programmers to refer to

these.

• C handles are of defined typedefs.

• Fortran handles are INTEGERs.

Initialising MPI

• C:
 int MPI_Init(int *argc, char ***argv)

• Fortran:

 MPI_INIT(IERROR)

 INTEGER IERROR

• Must be the first MPI procedure called.

• but multiple processes are already running before MPI_Init

MPI_Init
int main(int argc, char *argv[])

{

 ...

 MPI_Init(&argc, &argv);

 ...

int main()

{

 ...

 MPI_Init(NULL, NULL);

 ...

program my_mpi_program

 integer :: ierror

 ...

 CALL MPI_INIT(IERROR)

MPI_COMM_WORLD

Communicators

0 1

2 3 4

5
6

MPI_COMM_WORLD

Rank

• How do you identify different processes in a

communicator?

 MPI_Comm_rank(MPI_Comm comm, int *rank)

 MPI_COMM_RANK(COMM, RANK, IERROR)

 INTEGER COMM, RANK, IERROR

• The rank is not the physical processor number.

• numbering is always 0, 1, 2,, N-1

MPI_Comm_rank
 int rank;

 ...

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 printf(“Hello from rank %d\n”, rank);

 ...

 integer :: ierror

 integer :: rank

 ...

 CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierror)

 write(*,*) ‘Hello from rank ‘, rank

 ...

Size

• How many processes are contained within a

communicator?

 MPI_Comm_size(MPI_Comm comm, int *size)

 MPI_COMM_SIZE(COMM, SIZE, IERROR)

 INTEGER COMM, SIZE, IERROR

Exiting MPI

• C:

 int MPI_Finalize()

• Fortran:

 MPI_FINALIZE(IERROR)

 INTEGER IERROR

• Must be the last MPI procedure called.

Aborting MPI
• Aborting the execution from any processor (e.g. error

condition)

• C:

 int MPI_Abort(MPI_Comm comm,int errorcode)

• Fortran:

 MPI_ABORT(COMM, ERRORCODE, IERROR)

 INTEGER COMM, ERRORCODE, IERROR

• Behaviour

• will abort all processes even if only called by one process

• this is the ONLY MPI routine that can have this effect

• only use as a last-resort “nuclear” option!

What machine am I on?
• Can be useful on a cluster

• e.g. to confirm mapping of processes to nodes/processors/cores

integer namelen

character*(MPI_MAX_PROCESSOR_NAME) :: procname

...

call MPI_GET_PROCESSOR_NAME(procname, namelen, ierror)

write(*,*) ‘rank ‘, rank, ‘ is on machine ‘, procname(1:namelen)

int namelen;

char procname[MPI_MAX_PROCESSOR_NAME];

...

MPI_Get_processor_name(procname, &namelen);

printf(“rank %d is on machine %s\n", rank, procname);

Summary

• Have some covered basic calls

• but no explicit message-passing yet

• Can still write useful programs

• eg a task farm of independent jobs

• Need to compile and launch parallel jobs

• procedure is not specified by MPI

• next lecture gives machine-specific details

