
f2py : Fortran/C Interface

Neelofer Banglawala nbanglaw@epcc.ed.ac.uk
Kevin Stratford kevin@epcc.ed.ac.uk

Original course authors:
Andy Turner
Arno Proeme

L05_Student_FortranCInterface http://localhost:8889/nbconvert/html/L05_FortranCInterface/...

1 of 9 22/11/2015 23:40

www.archer.ac.uk

support@archer.ac.uk

[f2py] Why interface Fortran or C?

Provide glue to dynamically organise code
Handle complex software coordination provided by Python

Combine performance of compiled codes with flexibility of Python
e.g. incorporate Python analysis and visualisation into existing codebase
Provide flexible way to extract results from code using Python

Reuse code that you already have
Gradually introduce new functionality using Python

f2py command-line executable and module come with NumPy

More info:
http://docs.scipy.org/doc/numpy-dev/f2py/
http://scipy-cookbook.readthedocs.org
http://www.f2py.com/home/

L05_Student_FortranCInterface http://localhost:8889/nbconvert/html/L05_FortranCInterface/...

2 of 9 22/11/2015 23:40

[f2py] Interface with Fortran

You need to provide f2py with:
Fortran source code
signature file : a file describing the external function and its arguments (f2py can help you generate this)
Also need access to a Fortran compiler

f2py can :
create a signature file containing argument attributes (e.g. depend, `optional`) that define the Fortran-
Python interface
wrap Fortran code in an extension module (e.g. .so, .pyd files) that can be called from within Python

[f2py] General recipe

Create a signature file

write your own or
f2py <source_file> -m <module_name> -h <signature_file>.pyf
Typically the signature filename is the same as the source filename

1.

Check the signature file for correctness

Sequence and types of arguments to be passed from Python to Fortran function
Argument attributes, such as depend

2.

Produce the final extension module

f2py -c <signature_file> .pyf <source_file>

3.

Import module into Python and use the external Fortran function!

from <module> import <function>
The source filename may not be the same as the function name

4.

[f2py] Fortran : farray_sqrt.f90

Let's look at an example: farray_sqrt.f90 takes input array a_in of length n and returns a_out, an array of the square-root
of each element of a_in

L05_Student_FortranCInterface http://localhost:8889/nbconvert/html/L05_FortranCInterface/...

3 of 9 22/11/2015 23:40

! file farray_sqrt.f90
! Fortran Example : calculate the sqrt of each array element
subroutine array_sqrt(n, a_in, a_out)
 implicit none
 integer, intent(in) :: n
 real*8, dimension(n), intent(in) :: a_in
 real*8, dimension(n), intent(out) :: a_out
 integer :: i
 do i = 1, n
 a_out(i) = sqrt(a_in(i))
 end do
end subroutine array_sqrt

[f2py] Create a signature file

f2py can try to create the signature file (farray_sqrt.pyf) automatically
from a terminal, issue the command:
f2py farray_sqrt.f90 -m farray -h farray_sqrt.pyf

The Python module will be called: farray
use the -m option

Signature in text file called: farray_sqrt.pyf
use the -h option
will not overwrite an existing signature file:
Signature file "./farray_sqrt.pyf" exists!!! Use --overwrite-signature to overwrite.

In []: # can call from within Python to save exiting notebook...
use capture to suppress output from stdout
%%capture
!f2py farray_sqrt.f90 -m farray -h farray_sqrt.pyf

[f2py] Check signature file

Attributes such as optional, intent and depend specify the visibility, purpose and dependencies of the arguments.

! -*- f90 -*- ! Note: the context of this file is case sensitive. python module farray ! in
 interface ! in :farray
 subroutine array_sqrt(n,a_in,a_out) ! in :farray:farray_sqrt.f90
 integer, optional,intent(in),check(len(a_in)>=n),depend(a_in) :: n=len(a_in)
 real*8 dimension(n),intent(in) :: a_in
 real*8 dimension(n),intent(out), depend(n) :: a_out
 end subroutine array_sqrt
 end interface
end python module farray
! This file was auto-generated with f2py (version:2).
! See http://cens.ioc.ee/projects/f2py2e/

L05_Student_FortranCInterface http://localhost:8889/nbconvert/html/L05_FortranCInterface/...

4 of 9 22/11/2015 23:40

[f2py] Produce extension module

Once you have verified that the signature file is correct

Use f2py to compile a module file that can be imported into Python:

f2py -c farray_sqrt.pyf farray_sqrt.f90

This produces a shared library file called : farray.so

In []: # can run command from within notebook, use 'capture' to suppress stdout
%%capture
!f2py -c farray_sqrt.pyf farray_sqrt.f90

[f2py] Call external function from Python

In []: # import the extension module
import numpy as np
from farray import array_sqrt

In []: # view docsting of function (automatically produced)
array_sqrt?

In []: # let's use the function
ain = np.array([1.0,4.0,9.0,16.0]);
aout = array_sqrt(ain)
print aout

L05_Student_FortranCInterface http://localhost:8889/nbconvert/html/L05_FortranCInterface/...

5 of 9 22/11/2015 23:40

[f2py] fibonacci.f90 I

Use f2py to create an extension module for function fibonacci and test it in Python.
fibonacci fills input array a_out with the first n Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13 ... Remember to check the
signature file!

! file : fibonacci.f90
! Fortran Example :
! calculate first n Fibonacci numbers (not efficient!)
!
subroutine fibonacci(n, a_out)
 implicit none
 integer, intent(in) :: n
 real*8, dimension(n) :: a_out
 integer :: i
 do i = 1, n
 if (i.eq.1) then
 a_out(i) = 0.0
 elseif (i.eq.2) then
 a_out(i) = 1.0
 else
 a_out(i) = a_out(i-1) + a_out(i-2)
 endif
 enddo
end subroutine fibonacci

[f2py] fibonacci.f90 II

Let's test fibonacci in Python

In []: # create signature file
!f2py fibonacci.f90 -m ffib -h fibonacci.pyf;

In []: %%capture
produce compiled library
!f2py -c fibonacci.pyf fibonacci.f90;

In []: # import fibonacci from ffib
from ffib import fibonacci
fibonacci?

In []: # type that Fortran expects matter (effect 'd' and 'i')
f = np.zeros(10);
fibonacci(f.size, f) # need to specify n
print f

L05_Student_FortranCInterface http://localhost:8889/nbconvert/html/L05_FortranCInterface/...

6 of 9 22/11/2015 23:40

[f2py] Interface with C

f2py is the simplest way to interface C to Python

Basic procedure is very similar to Fortran

Differences:
You must write the signature file by hand
You must use the intent(c) attribute for all variables
You must define the function name with the intent(c) attribute
Only 1D arrays can be handled by C, if you pass a multidimensional array you must compute the
correct index.

Build in exactly the same way as Fortran example (but with different source code!)

[f2py] Interface with C : carray_sqrt.f90

// file carray_sqrt.f90
// C Example : calculate the sqrt of each array element
//
#include "math.h"
void array_sqrt(int n, double * a_in, double * a_out)
{
 for(int i = 0; i<n; ++i){
 a_out[i] = sqrt(a_in[i]);
 }
}

[f2py] Write C signature file

! -*- f90 -*-
! Note: the context of this file is case sensitive.

python module carray
interface
 subroutine array_sqrt(n,a_in,a_out)
 intent(c) array_sqrt ! array_sqrt is a C function
 intent(c) ! all arguments are
 ! considered as C based
 integer intent(hide), depend(a_in) :: n=len(a_in) ! n is the length
 ! of input array a_in
 double precision intent(in) :: a_in(n) ! a_in is input array
 ! (or arbitrary sequence)
 double precision intent(out), depend(a_in) :: a_out(n) ! a_out is output array,
 ! see source code
 end subroutine array_sqrt
end interface
end python module carray

L05_Student_FortranCInterface http://localhost:8889/nbconvert/html/L05_FortranCInterface/...

7 of 9 22/11/2015 23:40

[f2py] Test carray.array_sqrt

In []: # first remove Fortran version of array_sqrt
%reset_selective array_sqrt

In []: import numpy as np
import carray as carr

In []: # let's use the function
ain = np.array([1.0,4.0,9.0,16.0]);
aout = carr.array_sqrt(ain)
print aout

[f2py] Alternatives to f2py

Native Python interface
Fully-flexible and portable
Complex and verbose
Best if you are interfacing a large amount of code and/or have a large software development project

Cython : converts Python-like code into a C library which can call other C libraries
Standard C-like Python (or Python-like C)

SWIG (or Simplified Wrapper and Interface Generator) : reads header files and generates a library Python can
load

Very generic and feature-rich
Supports multiple languages other than Python (e.g. Perl, Ruby)

[f2py] Alternatives to f2py contd ...

ctypes, cffi (C Foreign Function Interface for Python) : both provide "foreign function interfaces", or lightweight
APIs, for calling C libraries from within Python

The goal is to provide a convenient and reliable way to call compiled C code from Python using interface
declarations written in C

Weave : includes C/C++ code within Python code and compiles it transparently

Boost.python : helps write C++ libraries that Python can load and use easily

PyCUDA : allows you to include NVIDIA CUDA code within Python. You can also write C code by hand, that can
be called by Python.

L05_Student_FortranCInterface http://localhost:8889/nbconvert/html/L05_FortranCInterface/...

8 of 9 22/11/2015 23:40

[f2py] Summary

Fortran/C can give better performance than Python

f2py is a simple way to call Fortran/C code from Python

(much) Simpler for Fortran than for C

Care needed when using multidimensional arrays in C

Calling sequence is converted to something more Pythonic:
array_sqrt(n, a_in, a_out)

becomes

a_out = array_sqrt(a_in)

L05_Student_FortranCInterface http://localhost:8889/nbconvert/html/L05_FortranCInterface/...

9 of 9 22/11/2015 23:40

