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Motivation 

• How do you know your program works? 

• Do you get the right result? 

• Do all the pieces work? 

• How can you demonstrate it is correct to others? 

• How do you know someone else’s code is correct? 

• Just write some code and see if it compiles? 

• We can do better 

• Test our code 

• Makes our lives easier 

• Saves us time 

• Improves the quality of our software 

• Lets us know when we have finished 
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What is software? 

• Starts with a customer with a problem 

• This generates requirements 

• Then you produce the solution 

• Design  

• Code 

• Installation 

• Documentation 

• … 

• Software is everything you deliver 

• All of it is testable 
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What is testing? 

 

• A procedure or quantifiable way to check the correctness 

and other metrics of a piece of software. 

 

• Testing is a process to verify 

• Software does what you expect 

• How well it does it 

 

• Applied throughout the development of a piece of 

software 
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Benefits of Testing 

• Testing improves 

• Quality of software 

• Reduce the number of errors 

• Find those errors quicker 

• Confidence 

• In the software itself 

• To make changes 

• Design 

• Makes you think about the interfaces and purpose of different parts of 

the software 
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What software testing is NOT 

• NOT just a bug hunt 
• We rushed the design and development, so we’re testing to find all the 

bad bugs before someone else does! 

 

• NOT something we do at the end of a project 
• The earlier you find a bug, the easier it is to fix 

• Test early, and test often! 

 

• NOT expensive 
• Do it continuously, from the start  

• Bugs you find at the design stage are cheaper to fix than once you 
start coding 

• Find errors when the problem area is fresh in your mind 
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Quantify 

• Ultimately, testing is needed to quantify whether your 

software satisfies the “Big Three” design goals… 

 

• Detail 

• Completeness 

• Intersection 

• Correct behaviour 

• Merit 

• Performance 
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Quality 

• Testing helps ensures that we have a quality product 

• A quality product is one that meets the end users expectations 

 

 

• What is bad software? 

•  Any product that does not live up to its expectations 

 

 

• Testing is an important part of any quality assurance 

process 
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 Bad software 1 

• Patriot Missile System 

• Highly publicised  

 

• Highly ineffective 

• time used to calculate target velocity 

• system converted time from internal clock to an integer 

• cumulative error in conversion 

• periodic re-boot to minimise error 

 

• No-one ever thought to test this! 
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Bad Software 2 

• Ariane 5 Explosion  

• Code from Ariane 4 re-used 

 

• Faster engines in Ariane 5 triggered a bug which caused 

buffer overflows 

• Oops!! 

• No comprehensive testing of old code in the new platform 

• Result – A very big bang 
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 Bad Software 3 

• Therac-25: Medical Linac  

• Two modes: “Electron” and “X-ray” 

• Defect in control sequence 
• user entered “X” by mistake 

• quickly corrected sequence, entering “E” 

• ran sequence 

• original sequence ran, not corrected 

• Because user corrected error quickly,  

•  the system did not update the change. 

 

• Several deaths occurred. 
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All Defects Have a Cost 

• The cost of smaller defects can still add up 

 

• How much time does it take to find and fix a bug? 
• Time to test and find a bug  1/2 hour 

• 5 people reading bug report       1/4 hr/person 

• 2 people reproducing bug               1/4 hr/person 

• 1 person to fix                               1 hour 

• Testing fix                          1/4 hour 

• Commit/review changes   1/4 hour 

 

• 2 1/2 hours maybe?  

• What happens if you find 10 bugs per day? 

 

• When caught by customers, easily add on an extra hour for measurable costs, 
plus harm to reputation. 

 

• The earlier in the development process you find a defect, the less expensive it is 
to fix 
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Bad Software 

• Poor Quality Software is 

• Hard to maintain 

• Hard to change 

• Embarrassing 

• Gives results that are less than rigorous 

• Costly  

• At worst, fatal. 
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Summary 

• Software testing includes the processes that: 

• Find out how our software behaves 

• Give us confidence that it does what we designed it to do 

• Establish the quality of the product 

• Tells us when to stop! 

• In Scientific work, we should know the expected outcome a-priori and how 
much tolerance from this value we will accept. 

 

• Testing allows us to reduce the number of costly defects in our 
software 

 

• Testing should be done from the beginning 
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Up next… 

• Introduction to types of software testing and when to do 

them 

• Will look at how Unit Testing fit into the rest of the software testing 

hierarchy 

• How to manage your tests 

• Project organisation 

• Managing test runs 

• Management of defects and bug fixes 
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Introduction to Types of Testing 

• Testing should occur throughout the software 

development process 

• Tests can be applied to 

• Individual components 

• Groups of components 

• The entire system 

• Lets look at types of tests applied to production quality 

software 
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Acceptance Testing 

Acceptance Testing 
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Acceptance Testing 

• Tests that the software does what the user wants 

• They should come from the requirements 

• They are MUST HAVES 

• They are the first part of the software you should design 

• I.e., does result X fall within N% (or N absolute) of the 

expected value from book work etc. 
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Acceptance Testing 

Stress/Load Testing 

Stress/Load Testing 
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Stress/Load Testing 

• Tests how robust the system is 

• How does the system cope under heavy loads? 

• Or with large data sizes 

• Sometimes to the point of failure 

• To test error handling 

• Tests realistic input in realistic conditions 

• Often code is developed using smaller computing 

resources 
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Acceptance Testing 

Stress/Load Testing 

System Testing 

System Testing 
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System Testing 

• Tests the entire system 
• The system being everything you’ve done so far 

• Used as a milestone check 

• Gives you confidence you’re on target 

• Systems tests should be designed at the same time as the code is 
designed 
• Think of them as mini-acceptance tests 

• Systems tests should ideally be done by a third-party (and involve an 
end-user) 
• Involves destructive testing (looking for bugs) 

• Constructive testing (suggesting improvements) 

• The tester and the developer have to work together to get the most 
from system testing 
• It’s easy for both sides to blame the other for problems 
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Acceptance Testing 

Stress/Load Testing 

System Testing 

Integration Testing 

Integration Testing 
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Integration Testing 

• Multiple software modules are tested together to check 

that they integrate properly 

• Designed to test the “glue” 

• Checks that interfaces are being used correctly 

• Tests assumptions made by developers of different modules 

• Communication throughout the development process 

reduces the pain when you come to do integration testing 

• Very important phase of testing 

• It is easy for things to fall between the gaps in modules 
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Acceptance Testing 

Stress/Load Testing 

System Testing 

Integration Testing 

Unit Testing 

Unit Testing 
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Unit Testing 

• Tests individual modules and small units of code 

• Verifies the low level behaviour of the software 

• More on this later… 
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Final Item: 

Acceptance 

Tests 

Unit Testing 

Integration and 

System Test  

Unit Testing 

Run all systems 

test and 

integration tests 

 

Testing and the design cube 

• What testing do we use and where? 
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Summary of types of testing 

• Different types of testing 

• Unit 

• Integration 

• System 

• Stress/Load 

• Acceptance 

• Applied throughout the development process 

• Continuous unit testing 

• Iterations of integration and system testing 

• Final stress and acceptance tests before delivering the final 

software 
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Re-motivation 

• Why test? 

• Increases the quality of the software you produce 

• Saves you time 

• Find bugs soon after they are introduced 

• Gives you confidence in the code you develop 

• Easier to add code and re-factor 

• Encourages good design 

• Makes you think more about the code as you write it 
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Tools & Techniques available 

• Junit, CPPUnit, *Unit 

• Test Driven Development is a proven technique now 

• Your fellow participants 

• Test your designs by describing them to someone else 

• The act of explaining things to others makes you realise gaps in 

your own knowledge 
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Software Testing 

• Should be carried out up-front and defined at design 

• Test early 

• NEVER at the project end only 

 

• Used to keep us on track 

• Test often 

• Use tools to help automate the process 

• E.g., Ant, Make 
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Brief Summary 

• Quality is key to all software components 

• Code 

• Documentation 

• Installation – often over looked 

• Functionality 

• Usability 

• Testing is a valuable tool that can help increase the 

quality of your software 

• Gives you confidence in your code 

• Very useful if you have to extend or change it 

 



Comfort Break 

• If needed… 



Agenda 

• Organization of tests 

• Managing test runs 

• Continued maintenance 
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Why bother? 
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• Larger projects require (some) management 

More code or More people 



Issues with testing 

• Lots of tests 

• Developer-led testing  

• System test 

• Etc. 

• How do you decide what to run and when? 

• Lots of data 

• Each run will produce lots of results! 

• Turn these into pass/fail statistics 

• How do you use these metrics? 

3
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What is Test Management 

• Test management is about organizing your project 

• Things to consider 

• Project structure 

• Test framework  

• Nightly builds 

• Code freeze 

• Code coverage tools  

• Test teams  

• Change management 

3
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Project structure 

• First of all, you need to get organised 

• Good project organisation 

• A must 

• Use make, ant, JUnit, CppUnit etc 

• IDEs good at this 

• Make dependencies obvious 

• Make it easy to file test results 

3
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Project structure 
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• For example: 

Build 

Output 

Unit tests 

Systems tests 

Source 

Configuration files 

Documentation: 

auto-generated, 

manuals, Readme 
Library output 

Build/Makefile 



Project structure 
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• Expanding code folders 
Source files 

Unit test files 
with same package/directory 

structure 

System test files 



Test framework 

• Organising structure and execution of the tests 

• Test harness 
• Allows you to execute a predefined set of (unit) tests  

• Runs exes in bin/tests folder 

• E.g. “runAllUnitTests” 

• Run test harness 
• As often as possible 

• Before you commit  

• Very important on large projects 

• Automatic 
• Nightly, weekly, monthly to track regression 

• Depending on how long to run 

• Depending on frequency of commits 

4
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Nightly Builds 

• Automatically building code and verifying correctness 

• Starts and runs automatically at a predefined time 

• Usually at night 

• Usual steps in a nightly build: 

• Checks out code from the repository 

• Builds the entire code 

• Runs all (unit) tests 

• Reports results (e.g., email, web page, etc.) 

4
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Benefits of Nightly Builds 

• Gives confidence that yesterdays changes didn’t (or did) 

break the software 

• Integrates and test components  

• Developed by different developers (important with bigger team) 

• In a “neutral” environment 

• Can be on multiple back-ends or environments 

• Shows trackable progress 

4
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Test Suites 

• Sub-sets of tests 

• Grouped together to test functionality 

• Testing specific aspects of the software 

• Shorter run-times 

• For example: “Smoke Tests” 

• Designed to “smoke out” defects 

• Group tests that test most important functionality  

4
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Viewing test results 

• Keep test results with each test 

• HTML format a good idea 

• Keep a record of the last runs 

• Keep a set of metrics 

• Have some sort of browsing tool 

• You can then dynamically view results 

• All this is non-trivial 

• But well worth the effort for a large project 

• Tools out there to help to generate results 

• JUnit, Ant, etc. 
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When to do test management? 

• Always 

• How much you do depends on  

• Number of developers  

• Duration of the project 

• Size of the code 

• You will also have to balance the benefits with cost of 

setting up resources  

• As the project grows add more aspects of test 

management 
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Pitfalls of test management 

• Test tools are not a “silver bullet” 

• No substitute for thorough manual testing 

• No substitute for communication 

 

• Be wary of bad tests 

• They will give a false sense of quality 

• Never be afraid to throw tests/data away 

• Make this part of your process 

4
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Pitfalls of test management 

• Be wary of metrics 

• What does 100% pass rate mean if I’m only testing 10% of the 

software? 

 

• It’s as important to know which tests fails, as much as 

how many 

• You can then spot weak areas 

• You can then prioritize fixes 
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Test Roles 

• Who is responsible for what? 

• Large projects will have a test team 

• Systems testing 

• Test infrastructure 

• Version management 

• Any third-party testing 

• QA 

• Developers responsible for “unit testing” 

• They deliver unit tests to test team once milestones are reached 
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Test Roles 

• Small projects  

• Independent testing not possible 

• Very hard to carry out destructive testing 

• Don’t just rely on Unit Tests. 

• You will miss things 

5
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Maintenance 

• Management of defects and bug-fixes 

• Large projects require change management 

 

• Defects are variance between expected and actual  

• Not necessarily a bug, or a crash 

 

• Certain requests for changes could be classed as a defect 

5

2 



Once the software is out there… 

• It’s hard to anticipate all problems  

• You can’t guess every use of the product 

• You can’t test for everything 

• Users will find defects that aren’t bugs! 

 

• Effective testing should trap most defects 

• Bugs will get through 

• You and your customers will find defects 
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What To Do 

• Try and document them 

• Use some sort of bug tracking system 

• E.g. Bugzilla, GitHub, GitLab 

• Even an Excel Spreadsheet 

• It’s important to prioritize fixes 

• Use a debugger, add details to your “Problem Reports” 

• Write a regression test 
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Example 

• http://dashboard.cp2k.org 

 

 

• http://buildbot.nektar.info 

 

 

http://dashboard.cp2k.org/
http://buildbot.nektar.info/
http://buildbot.nektar.info/
http://buildbot.nektar.info/


Defect creep 
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Key points of Defect Creep 

• When fixing bugs 

• We are writing more code 

• Therefore we introduce more defects 

• Defect creep: new bugs are introduced by bug fixes. 

• Use change management and regression testing to 

prevent defect creep  

• Minimize number of new defects introduced by bug-fix work. 
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Minimize Change Impact 

• Only make a change/fix if necessary 

• Risk management 

• Beware of quick wins! 

 

• Never, never, never make a change without  

• Consultation and  

• Documentation 
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Minimize Change Impact 

• Treat all changes/bug-fixes as mini-projects 

• Design, test, re-test 

• Make sure you use revision control 

• Consider creating a “bug-fix” stream 

• Maintains integrity of a “release” 

• Easy to spot if a fix “muddies the water” 

• Knowledge of a revision control system 

• All help reduce “Defect Creep” 
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Summary 

• Good organisation improves quality 

• Code, tests and data 

• Third party testing is important 

• Metrics and bad tests can be misleading 

• Have test reviews 

• Don’t make hasty changes 
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Practical 

• In the remaining time… 

• Split into 4 teams 

• Each time work on a testing strategy for: 

• Unit test 

• System test 

• Integration test 

• Acceptance test 

• Consider: 

• When will you test? 

• What will you test? 

• Which back-end will you run on? 

• Leave 15 minutes to present to other groups 


