
Software Testing for HPC
Nick Johnson, EPCC

Reusing this material

This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the

material under the following terms: You must give appropriate credit, provide a link to the

license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission

before reusing these images.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

3

Motivation

• How do you know your program works?

• Do you get the right result?

• Do all the pieces work?

• How can you demonstrate it is correct to others?

• How do you know someone else’s code is correct?

• Just write some code and see if it compiles?

• We can do better

• Test our code

• Makes our lives easier

• Saves us time

• Improves the quality of our software

• Lets us know when we have finished

4

What is software?

• Starts with a customer with a problem

• This generates requirements

• Then you produce the solution

• Design

• Code

• Installation

• Documentation

• …

• Software is everything you deliver

• All of it is testable

5

What is testing?

• A procedure or quantifiable way to check the correctness

and other metrics of a piece of software.

• Testing is a process to verify

• Software does what you expect

• How well it does it

• Applied throughout the development of a piece of

software

6

Benefits of Testing

• Testing improves

• Quality of software

• Reduce the number of errors

• Find those errors quicker

• Confidence

• In the software itself

• To make changes

• Design

• Makes you think about the interfaces and purpose of different parts of

the software

7

What software testing is NOT

• NOT just a bug hunt
• We rushed the design and development, so we’re testing to find all the

bad bugs before someone else does!

• NOT something we do at the end of a project
• The earlier you find a bug, the easier it is to fix

• Test early, and test often!

• NOT expensive
• Do it continuously, from the start

• Bugs you find at the design stage are cheaper to fix than once you
start coding

• Find errors when the problem area is fresh in your mind

8

in
te

rs
e
c
tio

n

perfect final item

clever final item but which

doesn’t satisfy basic

functional goals

sluggish but functional

final item

hopeless final item

good

final

item

merit

Quantify

• Ultimately, testing is needed to quantify whether your

software satisfies the “Big Three” design goals…

• Detail

• Completeness

• Intersection

• Correct behaviour

• Merit

• Performance

9

Quality

• Testing helps ensures that we have a quality product

• A quality product is one that meets the end users expectations

• What is bad software?

• Any product that does not live up to its expectations

• Testing is an important part of any quality assurance

process

10

 Bad software 1

• Patriot Missile System

• Highly publicised

• Highly ineffective

• time used to calculate target velocity

• system converted time from internal clock to an integer

• cumulative error in conversion

• periodic re-boot to minimise error

• No-one ever thought to test this!

11

Bad Software 2

• Ariane 5 Explosion

• Code from Ariane 4 re-used

• Faster engines in Ariane 5 triggered a bug which caused

buffer overflows

• Oops!!

• No comprehensive testing of old code in the new platform

• Result – A very big bang

12

 Bad Software 3

• Therac-25: Medical Linac

• Two modes: “Electron” and “X-ray”

• Defect in control sequence
• user entered “X” by mistake

• quickly corrected sequence, entering “E”

• ran sequence

• original sequence ran, not corrected

• Because user corrected error quickly,

• the system did not update the change.

• Several deaths occurred.

13

All Defects Have a Cost

• The cost of smaller defects can still add up

• How much time does it take to find and fix a bug?
• Time to test and find a bug 1/2 hour

• 5 people reading bug report 1/4 hr/person

• 2 people reproducing bug 1/4 hr/person

• 1 person to fix 1 hour

• Testing fix 1/4 hour

• Commit/review changes 1/4 hour

• 2 1/2 hours maybe?

• What happens if you find 10 bugs per day?

• When caught by customers, easily add on an extra hour for measurable costs,
plus harm to reputation.

• The earlier in the development process you find a defect, the less expensive it is
to fix

14

Bad Software

• Poor Quality Software is

• Hard to maintain

• Hard to change

• Embarrassing

• Gives results that are less than rigorous

• Costly

• At worst, fatal.

15

Summary

• Software testing includes the processes that:

• Find out how our software behaves

• Give us confidence that it does what we designed it to do

• Establish the quality of the product

• Tells us when to stop!

• In Scientific work, we should know the expected outcome a-priori and how
much tolerance from this value we will accept.

• Testing allows us to reduce the number of costly defects in our
software

• Testing should be done from the beginning

16

Up next…

• Introduction to types of software testing and when to do

them

• Will look at how Unit Testing fit into the rest of the software testing

hierarchy

• How to manage your tests

• Project organisation

• Managing test runs

• Management of defects and bug fixes

17

Introduction to Types of Testing

• Testing should occur throughout the software

development process

• Tests can be applied to

• Individual components

• Groups of components

• The entire system

• Lets look at types of tests applied to production quality

software

18

Acceptance Testing

Acceptance Testing

19

Acceptance Testing

• Tests that the software does what the user wants

• They should come from the requirements

• They are MUST HAVES

• They are the first part of the software you should design

• I.e., does result X fall within N% (or N absolute) of the

expected value from book work etc.

20

Acceptance Testing

Stress/Load Testing

Stress/Load Testing

21

Stress/Load Testing

• Tests how robust the system is

• How does the system cope under heavy loads?

• Or with large data sizes

• Sometimes to the point of failure

• To test error handling

• Tests realistic input in realistic conditions

• Often code is developed using smaller computing

resources

22

Acceptance Testing

Stress/Load Testing

System Testing

System Testing

23

System Testing

• Tests the entire system
• The system being everything you’ve done so far

• Used as a milestone check

• Gives you confidence you’re on target

• Systems tests should be designed at the same time as the code is
designed
• Think of them as mini-acceptance tests

• Systems tests should ideally be done by a third-party (and involve an
end-user)
• Involves destructive testing (looking for bugs)

• Constructive testing (suggesting improvements)

• The tester and the developer have to work together to get the most
from system testing
• It’s easy for both sides to blame the other for problems

24

Acceptance Testing

Stress/Load Testing

System Testing

Integration Testing

Integration Testing

25

Integration Testing

• Multiple software modules are tested together to check

that they integrate properly

• Designed to test the “glue”

• Checks that interfaces are being used correctly

• Tests assumptions made by developers of different modules

• Communication throughout the development process

reduces the pain when you come to do integration testing

• Very important phase of testing

• It is easy for things to fall between the gaps in modules

26

Acceptance Testing

Stress/Load Testing

System Testing

Integration Testing

Unit Testing

Unit Testing

27

Unit Testing

• Tests individual modules and small units of code

• Verifies the low level behaviour of the software

• More on this later…

28

in
te

rs
e
c
tio

n

merit

Final Item:

Acceptance

Tests

Unit Testing

Integration and

System Test

Unit Testing

Run all systems

test and

integration tests

Testing and the design cube

• What testing do we use and where?

29

Summary of types of testing

• Different types of testing

• Unit

• Integration

• System

• Stress/Load

• Acceptance

• Applied throughout the development process

• Continuous unit testing

• Iterations of integration and system testing

• Final stress and acceptance tests before delivering the final

software

30/01/13 30

Re-motivation

• Why test?

• Increases the quality of the software you produce

• Saves you time

• Find bugs soon after they are introduced

• Gives you confidence in the code you develop

• Easier to add code and re-factor

• Encourages good design

• Makes you think more about the code as you write it

30/01/13 31

Tools & Techniques available

• Junit, CPPUnit, *Unit

• Test Driven Development is a proven technique now

• Your fellow participants

• Test your designs by describing them to someone else

• The act of explaining things to others makes you realise gaps in

your own knowledge

30/01/13 32

Software Testing

• Should be carried out up-front and defined at design

• Test early

• NEVER at the project end only

• Used to keep us on track

• Test often

• Use tools to help automate the process

• E.g., Ant, Make

30/01/13 33

Brief Summary

• Quality is key to all software components

• Code

• Documentation

• Installation – often over looked

• Functionality

• Usability

• Testing is a valuable tool that can help increase the

quality of your software

• Gives you confidence in your code

• Very useful if you have to extend or change it

Comfort Break

• If needed…

Agenda

• Organization of tests

• Managing test runs

• Continued maintenance

3

5

Why bother?

3

6

• Larger projects require (some) management

More code or More people

Issues with testing

• Lots of tests

• Developer-led testing

• System test

• Etc.

• How do you decide what to run and when?

• Lots of data

• Each run will produce lots of results!

• Turn these into pass/fail statistics

• How do you use these metrics?

3

7

What is Test Management

• Test management is about organizing your project

• Things to consider

• Project structure

• Test framework

• Nightly builds

• Code freeze

• Code coverage tools

• Test teams

• Change management

3

8

Project structure

• First of all, you need to get organised

• Good project organisation

• A must

• Use make, ant, JUnit, CppUnit etc

• IDEs good at this

• Make dependencies obvious

• Make it easy to file test results

3

9

Project structure

4

0

• For example:

Build

Output

Unit tests

Systems tests

Source

Configuration files

Documentation:

auto-generated,

manuals, Readme
Library output

Build/Makefile

Project structure

4

1

• Expanding code folders
Source files

Unit test files
with same package/directory

structure

System test files

Test framework

• Organising structure and execution of the tests

• Test harness
• Allows you to execute a predefined set of (unit) tests

• Runs exes in bin/tests folder

• E.g. “runAllUnitTests”

• Run test harness
• As often as possible

• Before you commit

• Very important on large projects

• Automatic
• Nightly, weekly, monthly to track regression

• Depending on how long to run

• Depending on frequency of commits

4

2

Nightly Builds

• Automatically building code and verifying correctness

• Starts and runs automatically at a predefined time

• Usually at night

• Usual steps in a nightly build:

• Checks out code from the repository

• Builds the entire code

• Runs all (unit) tests

• Reports results (e.g., email, web page, etc.)

4

3

Benefits of Nightly Builds

• Gives confidence that yesterdays changes didn’t (or did)

break the software

• Integrates and test components

• Developed by different developers (important with bigger team)

• In a “neutral” environment

• Can be on multiple back-ends or environments

• Shows trackable progress

4

4

Test Suites

• Sub-sets of tests

• Grouped together to test functionality

• Testing specific aspects of the software

• Shorter run-times

• For example: “Smoke Tests”

• Designed to “smoke out” defects

• Group tests that test most important functionality

4

5

Viewing test results

• Keep test results with each test

• HTML format a good idea

• Keep a record of the last runs

• Keep a set of metrics

• Have some sort of browsing tool

• You can then dynamically view results

• All this is non-trivial

• But well worth the effort for a large project

• Tools out there to help to generate results

• JUnit, Ant, etc.

4

6

When to do test management?

• Always

• How much you do depends on

• Number of developers

• Duration of the project

• Size of the code

• You will also have to balance the benefits with cost of

setting up resources

• As the project grows add more aspects of test

management

4

7

Pitfalls of test management

• Test tools are not a “silver bullet”

• No substitute for thorough manual testing

• No substitute for communication

• Be wary of bad tests

• They will give a false sense of quality

• Never be afraid to throw tests/data away

• Make this part of your process

4

8

Pitfalls of test management

• Be wary of metrics

• What does 100% pass rate mean if I’m only testing 10% of the

software?

• It’s as important to know which tests fails, as much as

how many

• You can then spot weak areas

• You can then prioritize fixes

4

9

Test Roles

• Who is responsible for what?

• Large projects will have a test team

• Systems testing

• Test infrastructure

• Version management

• Any third-party testing

• QA

• Developers responsible for “unit testing”

• They deliver unit tests to test team once milestones are reached

5

0

Test Roles

• Small projects

• Independent testing not possible

• Very hard to carry out destructive testing

• Don’t just rely on Unit Tests.

• You will miss things

5

1

Maintenance

• Management of defects and bug-fixes

• Large projects require change management

• Defects are variance between expected and actual

• Not necessarily a bug, or a crash

• Certain requests for changes could be classed as a defect

5

2

Once the software is out there…

• It’s hard to anticipate all problems

• You can’t guess every use of the product

• You can’t test for everything

• Users will find defects that aren’t bugs!

• Effective testing should trap most defects

• Bugs will get through

• You and your customers will find defects

5

3

What To Do

• Try and document them

• Use some sort of bug tracking system

• E.g. Bugzilla, GitHub, GitLab

• Even an Excel Spreadsheet

• It’s important to prioritize fixes

• Use a debugger, add details to your “Problem Reports”

• Write a regression test

5

4

Example

• http://dashboard.cp2k.org

• http://buildbot.nektar.info

http://dashboard.cp2k.org/
http://buildbot.nektar.info/
http://buildbot.nektar.info/
http://buildbot.nektar.info/

Defect creep

5

6

Time

N
u

m
b

e
r o

f D
e

fe
c
ts

Feature

freeze

Key points of Defect Creep

• When fixing bugs

• We are writing more code

• Therefore we introduce more defects

• Defect creep: new bugs are introduced by bug fixes.

• Use change management and regression testing to

prevent defect creep

• Minimize number of new defects introduced by bug-fix work.

5

7

Minimize Change Impact

• Only make a change/fix if necessary

• Risk management

• Beware of quick wins!

• Never, never, never make a change without

• Consultation and

• Documentation

5

8

Minimize Change Impact

• Treat all changes/bug-fixes as mini-projects

• Design, test, re-test

• Make sure you use revision control

• Consider creating a “bug-fix” stream

• Maintains integrity of a “release”

• Easy to spot if a fix “muddies the water”

• Knowledge of a revision control system

• All help reduce “Defect Creep”

5

9

Summary

• Good organisation improves quality

• Code, tests and data

• Third party testing is important

• Metrics and bad tests can be misleading

• Have test reviews

• Don’t make hasty changes

6

0

Practical

• In the remaining time…

• Split into 4 teams

• Each time work on a testing strategy for:

• Unit test

• System test

• Integration test

• Acceptance test

• Consider:

• When will you test?

• What will you test?

• Which back-end will you run on?

• Leave 15 minutes to present to other groups

