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Introduction to MC methods 

Why Scientists like to gamble 

http://www.epcc.ed.ac.uk/
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Overview 

• Integration by random numbers 

– Why? 

– How? 

• Uncertainty, Sharply peaked distributions 

– Importance sampling 

• Markov Processes and the Metropolis algorithm 

• Examples 

– statistical physics 

– finance 

– weather forecasting 

http://www.epcc.ed.ac.uk/
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Integration – Area under a curve 

Tile area with strips 

of height f(x) and 

width δx 

0 dxx

Analytical: 

Numerical: integral 

replaced with a sum.  

Uncertainty depends on size of δx (N points) and order of 

scheme, (Trapezoidal, Simpson, etc) 

http://www.epcc.ed.ac.uk/
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Multi-dimensional integration 

1d integration 

requires N points 

2d integration 

requires N2  

Problem of dimension 

m requires Nm 

Curse of dimensionality 

http://www.epcc.ed.ac.uk/
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Calculating p by MC 

Area of circle = pr2 

Area of unit square, s = 1 

Area of shaded arc, 

c = p/4 

c/s = p/4 

Estimate ratio of 

shaded to non-shaded 

area to determine p 

http://www.epcc.ed.ac.uk/
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The algorithm 

• y = rand()/RAND_MAX // float {0.0:1.0} 

• x = rand()/RAND_MAX 

• P=x*x + y*y  // x*x + y*y = 1 eqn of circle 

• If(P<=1) 

– isInCircle 

• Else 

– IsOutCircle 

• Pi=4*isInCircle / (isOutCircle+isInCircle) 

http://www.epcc.ed.ac.uk/
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p from 10 darts 

p = 2.8 

http://www.epcc.ed.ac.uk/
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p from 100 darts 

p = 3.0 

http://www.epcc.ed.ac.uk/
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p from 1000 darts 

p = 3.12 

http://www.epcc.ed.ac.uk/
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Estimating the uncertainty 

• Stochastic method 

–Statistical uncertainty 

• Estimate this  

–Run each measurement 100 

times with different random 

number sequences 

–Determine the variance of the 

distribution 

 

• Standard deviation is s 

• How does the uncertainty 

scale with N, number of 

samples 

  kxx /
22

s

http://www.epcc.ed.ac.uk/
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Uncertainty versus N 

• Log-log plot 

 

 

• Exponent b, is gradient 

• b ≈ -0.5 

• Law of large numbers and 

central limit theorem 

xbay

axy
b

logloglog 



D  1/N 

True for all MC methods 

http://www.epcc.ed.ac.uk/


More realistic problem 

• Imagine traffic model 

– can compute average velocity for a given density 

– this in itself requires random numbers ... 

 

• What if we wanted to know average velocity of cars over a 

week 

– each day has a different density of cars (weekday, weekend, ...) 

– assume this has been measured (by a man with a clipboard) 
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Density Frequency 

0.3 4 

0.5 1 

0.7 2 

http://www.epcc.ed.ac.uk/


Expectation values 

• Procedure: 

– run a simulation for each density to give average car velocity 

– compute average over week by weighting by probability of that density 

 

– i.e. velocity = 1/7* (  4 * velocity(density = 0.3) + 

    1 * velocity(density = 0.5) + 

    2 * velocity(density = 0.7)     ) 

 

• In general, for many states xi (e.g. density) and some function 

f(xi) (e.g. velocity) need to compute expectation value <f> 

 𝑝 xi ∗ 𝑓(𝑥𝑖) 

𝑁

1
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Continuous distribution 
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1 0 

density of 

traffic 

probability of 

occurrence 

http://www.epcc.ed.ac.uk/
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Aside: A highly dimensional system 

http://www.epcc.ed.ac.uk/
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A high dimensional system 

• 1 coin has 1 degree of freedom 

– Two possible states Heads and Tails 

• 2 coins have 2 degrees of freedoms 

– Four possible micro-states, two of which are the same 

– Three possible states 1*HH, 2*HT, 1*TT 

• n coins have n degrees of freedom 

– 2n microstates: n+1 states 

– Number of micro-states in each state is given by the binomial 

expansion coefficient 

http://www.epcc.ed.ac.uk/
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Highly peaked distribution 

http://www.epcc.ed.ac.uk/
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Highly peaked distribution 

http://www.epcc.ed.ac.uk/
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100 Coins 

• 96.48% of all 

possible outcomes lie 

between 40 – 60 

heads 

http://www.epcc.ed.ac.uk/
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Importance Sampling (i) 

• The distribution is often sharply 

peaked 

– especially high-dimensional 

functions 

– often with fine structure detail 

• Random sampling 

– p(xi) ~ 0 for many xi  

– N large to resolve fine structure 

• Importance sampling 

– generate weighted distribution 

– proportional to probability 

http://www.epcc.ed.ac.uk/


Importance Sampling (ii) 

• With random (or uniform) sampling 

                          <f > =  𝑝 xi ∗ 𝑓(xi) 
𝑁
1  

 

– but for highly peaked distributions, p(xi) ~ 0 for most cases 

– most of our measurements of f(xi)  are effectively wasted 

– large statistical uncertainty in result 

• If we generate xi  with probability proportional to p(xi) 

                        <f > = 
1

𝑁
 𝑓(xi) 
𝑁
1  

– all measurements contribute equally 

• But how do we do this? 
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Hill-walking example 

• Want to spend your time in areas proportional to height h(x) 

 

 

 

 

 

 

– walk randomly to explore all positions xi 

– if you always head up-hill or down-hill 

– get stuck at nearest peak or valley 

– if you head up-hill or down-hill with equal probability 

– you don’t prefer peaks over valleys 

• Strategy 

– take both up-hill and down-hill steps but with a preference for up-hill 
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• Generate samples of {xi} with probability p(x) 

• xi no longer chosen independently 

• Generate new value from old – evolution 

 

• Accept/reject change based on p(xi) and p(xi+1)  

– if p(xi+1) > p(xi) then accept the change 

– if p(xi+1) < p(xi) then accept with probability 
p(xi+1)
p(xi)

 

• Asymptotic probability of xi appearing is proportional to p(x) 

• Need random numbers 

– to generate random moves x and to do accept/reject step 

 

xxx
ii


1

Markov Process 

AA Markov 1856-1922 

http://www.epcc.ed.ac.uk/
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Markov Chains 

• The generated sample forms a Markov chain 

 

• The update process must be ergodic  

– Able to reach all x 

– If the updates are non-ergodic then some states will be absent 

– Probability distribution will not be sampled correctly 

– computed expectation values will be incorrect! 

 

• Takes some time to equilibrate 

– need to forget where you started from 

 

• Accept / reject step is called the Metropolis algorithm 

http://www.epcc.ed.ac.uk/
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Markov Chains and Convergence 

http://www.epcc.ed.ac.uk/


Statistical Physics 

• Many applications use MC 

• Statistical physics is an example 

• Systems have extremely high dimensionality 

– e.g. positions and orientations of millions of atoms 

• Use MC to generate “snapshots” or configurations of the 

system 

• Average over these to obtain answer 

– Each individual state has no real meaning on its own 

– Quantities determined as averages across all the states 
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MC in Finance 

• Used to price options  

• An option is a contract, holder has the right 

– buy  an asset – call 

– sell an asset – put 

– at some time in the future (T) 

– For a predetermined price (strike price) X 

•  Terminal pay off for the holder is then  

 

– where ST is the price of the underlying asset at time T 

– ± call/put 

• How much should the option cost? 
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MC in Finance II 

• Price model called Black-Scholes equation 

– Partial differential equation 

– based on geometric brownian motion (GMB) of underlying asset 

• Assumes a “perfect” market 

– markets are not perfect, especially during crashes! 
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– Many extensions 

– area of active 

research 

• Use MC to generate 

many different GMB 

paths 

– statistically analyse 

ensemble 

http://www.epcc.ed.ac.uk/


Numerical Weather Prediction 
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Image taken by 

NASA’s Terra 

Satellite  

7th January 2010 

 

Britain in the grip of 

a very cold spell of 

weather 

http://www.epcc.ed.ac.uk/
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NWP in the UK 

• Weather forecasts used by the media in the UK (e.g. BBC 

news) are generated by the UK Met office 

– Code is called the Unified Model 

– Same code runs climate model and weather forecast 

– Can cover the whole globe 

 

 

• Newest supercomputer 
– Cray XC40 

– almost half a million processor-cores 

– weighs 140 tonnes 

 

(http://www.bbc.co.uk/news/science-environment-29789208) 

http://www.epcc.ed.ac.uk/
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Initial conditions and the Butterfly effect 

• The equations are extremely sensitive to initial conditions 

– Small changes in the initial conditions result in large changes in 

outcome 

• Discovered by Edward Lorenz circa 1960 

– 12 variable computer model 

– Minute variations in input parameters 

– Resulted in grossly different weather patterns 

Mathematical Model 

Actual Implementation 

(code) 
Input Results 

Real World 

Numerical Algorithm 

(on paper) 

• The Butterfly effect 

– The flap of a butterfly’s wings can effect the 

path of a tornado 

– My prediction is wrong because of effects too 

small to see 

http://www.epcc.ed.ac.uk/
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Chaos, randomness and probability 

• A Chaotic system evolves to very 

different states from close initial states 

– no discernible pattern 

• We can use this to estimate how reliable our forecast is: 

• Perturb the initial conditions 

–Based on uncertainty of measurement 

–Run a new forecast 

• Repeat many times (random numbers to do perturbation) 

–Generate an “ensemble” of forecasts 

–Can then estimate the probability of the forecast being correct 

• If we ran 100 simulations and 70 said it would rain 

–probability of rain is 70% 

–called ensemble weather forecasting 

 

A 

B 

http://www.epcc.ed.ac.uk/


 Optimisation Problems  

• Optima of function rather than averages 

• Often need to minimise or maximise functions of many 

variables 

– minimum distance for travelling salesman problem  

– minimum error for a set of linear equations 

• Procedure  

– take an initial guess  

– successively update to progress towards solution 

• What changes should be proposed?  

– could reduce/increase the function with each update (steepest 
descent/ascent) ...  

– ... but this will only find the local minimum/maximum 
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Stochastic Optimisation 

• Add a random component to updates  

• Sometimes make "bad" moves  

– possible to escape from local minima  

– but want more up-hill steps than down-hill ones 

• Hill-walking example  

– find the highest peak in the Alps by maximising h(x) 
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Simulated Annealing  

• Monte Carlo technique applied to optimisation  

• Analogy with Metropolis and Statistical Mechanics 

• Initial “high-temperature” phase 

– accept both up-hill and down-hill steps to explore the space 

 

• Intermediate phase 

– start to prefer up-hill steps to look for highest mountain 

 

• Final “zero-temperature” phase 

– only accept up-hill steps to locate the peak of the mountain 

 

• A lot of freedom in how you vary the temperature ... 
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Summary 

• Random numbers used in many simulations 

 

• Mainly to efficiently sample a large space of possibilities 

 

• One state generated from another: Markov Chain 

– Metropolis algorithm gives a guided random walk 

 

• Real simulations can require trillions of random numbers! 

– parallelisation introduces additional complexities ... 
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