Numerical computing

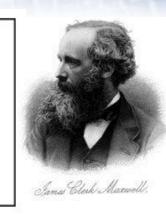
How computers store real numbers and the problems that result

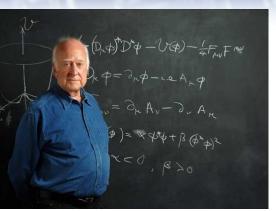
The scientific method

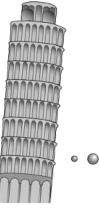
epcc

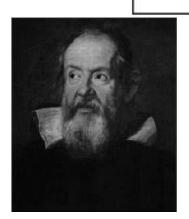
Theory: Mathematical equations provide a description or model

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$
$$\nabla \cdot \mathbf{D} = \rho$$
$$\nabla \cdot \mathbf{B} = 0$$





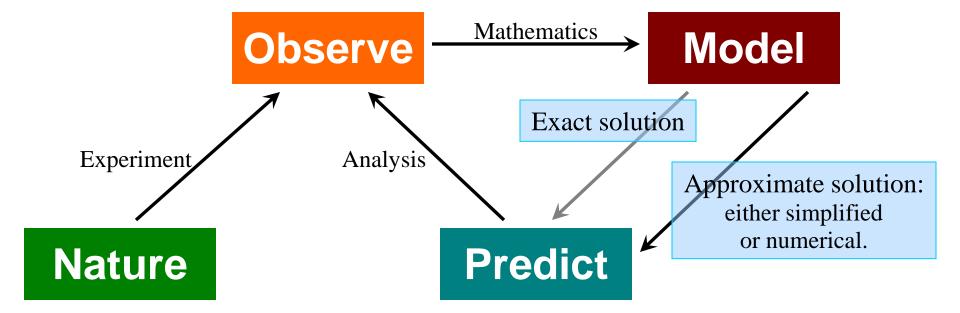




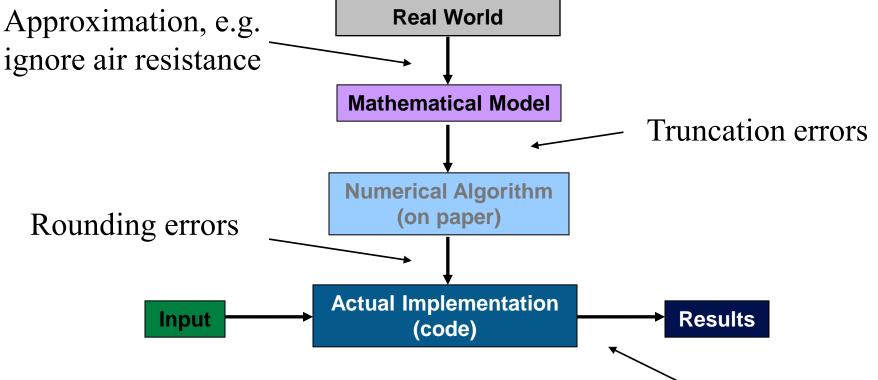
- Experiment
 - Inference from data
 - Test hypothesis

- Computer simulation
 - Too big, small, difficult or dangerous for standard methods
 - Explore the space of solutions

Computer Simulation in Science



Numerical solution



• All numerical methods contain errors

Data errors

- It is essential to understand these errors
 - When is the solution obtained good enough

Data Errors

- Poor data.
 - It is very difficult to write code that will compensate for errors in your input data.
- Badly stored data:
 - The simplest failure can occur on the loading and saving of data.

integer or floating-point.

Output from internal representation to decimal (usually).

- be careful to save as accurately as possible
- writing as text may not be ideal

• Truncation errors

- due to the differences between the mathematical model and the numerical algorithm.
 - independent of implementation or precision.
- Examples: Taylor Series expansion
 - the sin function may be calculated as:

 $sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$

- in practice we *truncate* the series at some finite order
- In real simulations, often comes from *discretising the* problem
 - eg a weather simulation takes place on a 10km grid
 - can reduce truncation errors by, eg, using a smaller grid
 - but this requires a lot more computer time!

- Due to the fact that real values are stored approximately
 - subject of the rest of this talk

|epcc|

- Integers
- Reals, floats, doubles, etc.
- Arithmetical operations and rounding errors

• We write:

$$\mathbf{x} = sqrt(2.0)$$

– but how is this stored?

- Mathematics is an ideal world
 - integers can be as large as you want
 - real numbers can be as large or as small as you want
 - can represent every number exactly:

1, -3, 1/3, 10³⁶²³⁷, 10⁻²³²³²², $\sqrt{2}$, π ,

- Numbers range from ∞ to +∞
 - there are also an infinite number in any interval (infinite precision)
- This not true on a computer
 - numbers have a limited range (integers and real numbers)
 - limited precision (real numbers)

- We like to use **base 10**
 - we only write the 10 characters 0,1,2,3,4,5,6,7,8,9
 - use position to represent each power of 10

$$125 = 1 * 102 + 2 * 101 + 5 * 100$$

= 1*100 + 2*10 + 5*1 = 125

- represent positive or negative using a leading "+" or "-"
- Computers are binary machines
 - can only store ones and zeros
 - minimum storage unit is 8 bits = 1 byte
- Use base 2

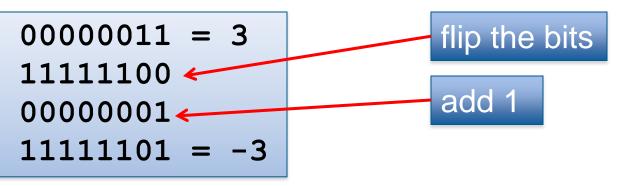
1111101=1*2⁶ +**1***2⁵ +**1***2⁴ +**1***2³ +**1***2² +**0***2¹ +**1***2⁰ =**1***64 +**1***32 +**1***16 +**1***8 +**1***4 +**0***2 +**1***1 =**125**

Storage and Range

- Assume we reserve 1 byte (8 bits) for integers
 - minimum value 0
 - maximum value $2^8 1 = 255$
 - if result is out of range we will overflow and get wrong answer!
- Standard storage is 4 bytes = 32 bits
 - minimum value 0
 - maximum value $2^{32} 1 = 4294967291 = 4$ billion = 4G
- Is this a problem?
 - question: what is a 32-bit operating system?
- Can use 8 bytes (64 bit integers)

Aside: Negative Integers

- Use "two's complement" representation
 - flip all ones to zeros and zeros to ones
 - then add one (ignoring overflow)
- Negative integers have the first bit set to "1"
 - for 8 bits, range is now: -128 to + 127
 - normal addition (ignoring overflow) gives the correct answer



125 + (-3) = 01111101 + 11111101 = 01111010 = 122

- These can be added, subtracted and multiplied with complete accuracy...
 - ...as long as the final result is not too large in magnitude

- But what about division?
 - 4/2 = 2, 27/3 = 9, but 7/3 = 2 (instead of 2.3333333333333...).
 - what do we do with numbers like that?
 - how do we store real numbers?

- Can use an integer to represent a real number.
 - we have 8 bits stored in X 0-255.
 - represent real number *a* between 0.0 and 1.0 by dividing by 256
 - e.g. a = 5/9 = 0.55555 represented as X=142
 - -142/256 = 0.5546875
 - X = integer($a \times 256$), Y=integer($b \times 256$), Z=integer($c \ge 256$)
- Operations now treat integers as fractions:

- E.g. c = a × b becomes 256c = (256a × 256b)/256,

$$.e.Z = X \times Y/256$$

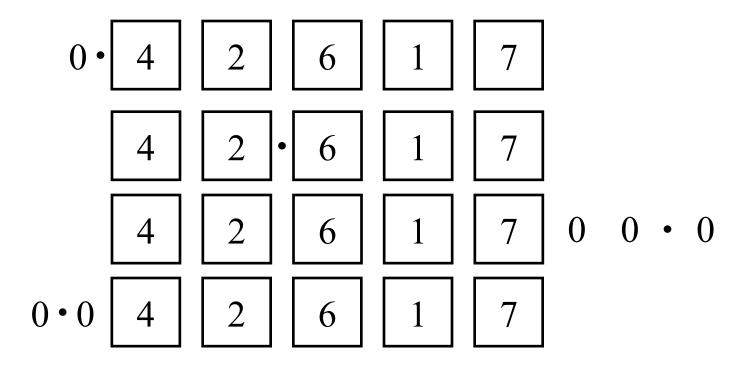
 Between the upper and lower limits (0.0 & 1.0), we have a uniform grid of possible 'real' numbers.

Problems with Fixed Point

- This arithmetic is very fast
 - but does not cope with large ranges
 - eg above, cannot represent numbers < 0 or numbers >= 1

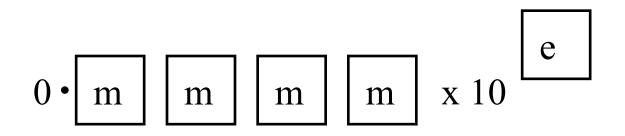
- Can adjust the range
 - but at the cost of precision

- Decimal numbers
- Imagine we only have space for 5 numbers
 - put decimal point in a fixed location



Scientific Notation (in Decimal)

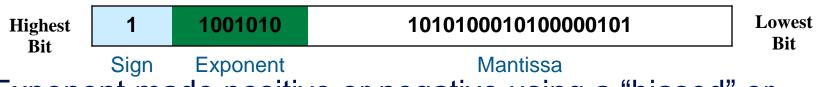
- How do we store 4261700.0 and 0.042617
 - in the same storage scheme?
- Decimal point was previously fixed
 - now let it *float* as appropriate
- Shift the decimal place so that it is at the start
 - ie 0.42617 (this is the mantissa m)
- Remember how many places we have to shift
 - ie +7 or -1 (the exponent e)
- Actual number is 0.mmmm x 10^e
 - ie 0.4262 * 10⁺⁷ or 0.4262 * 10⁻¹
 - always use all 5 numbers don't waste space storing leading zero!
 - automatically adjusts to the magnitude of the number being stored
 - could have chosen to use 2 spaces for e to cope with very large numbers



- Decimal point "floats" left and right as required
 - fixed-point numbers have constant absolute error, eg +/- 0.00001
 - floating-point have a constant relative error, eg +/- 0.001%
- Computer storage of real numbers directly analogous to scientific notation
 - except using binary representation not decimal
 - ... with a few subtleties regarding sign of *m* and *e*
- All modern processors are designed to deal with floatingpoint numbers *directly in hardware*

The IEEE 754 Standard

- Mantissa made positive or negative:
 - the first bit indicates the sign: 0 = positive and 1 = negative.
- General binary format is:



• Exponent made positive or negative using a "biased" or

"shifted" representation:

- If the stored exponent, c, is X bits long, then the actual exponent is

c – bias where the offset bias = $(2^{\times}/2 - 1)$. e.g. X=3:

Stored (c,binary)	000	001	010	011	100	101	110	111
Stored (c,decimal)	0	1	2	3	4	5	6	7
Represents (c-3)	-3	-2	-1	0	1	2	3	4

epcc

- In base 10 exponent-mantissa notation:
 - we chose to standardise the mantissa so that it always lies in the binary range $0.0 \le m < 1.0$
 - the first digit is always 0, so there is no need to write it.
- The FP mantissa is "normalised" to lie in the **binary** range:

 $1.0 \le m < 10.0$ ie decimal range [1.0,2.0)

- as the first bit is always one, there is no need to store it, We only store the variable part, called the significand (f).
- the mantissa m = 1.f (in binary), and the 1 is called "The Hidden Bit":
- however, this means that zero requires special treatment.
 - having f and e as all zeros is defined to be (+/-) zero.

Binary Fractions: what does 1.f mean?

- Whole numbers are straightforward
 - base 10: $109 = 1*10^2 + 0*10^1 + 9*10^0 = 1*100 + 0*10 + 9*1 = 109$
 - base 2: $1101101 = 1^{26}+1^{25}+0^{24}+1^{23}+1^{22}+0^{21}+1^{20}$

$$= 1*64 + 1*32 + 0*16 + 1*8 + 1*4 + 0*2 + 1*1$$

• Simple extension to fractions $109.625 = 1*10^2 + 0*10^1 + 9*10^0 + 6*10^{-1} + 2*10^{-2} + 5*10^{-3}$ = 1*100 + 0*10 + 9*1 + 6*0.1 + 2*0.01 + 5*0.001

$$1101101.101 = 109 + 1*2^{-1} + 0*2^{-2} + 1*2^{-3}$$

= 109 + 1*(1/2) + 0*(1/4) + 1*(1/8)
= 109 + 0.5 + 0.125
= 109.625

- base 10: $109.625 = 109 + 625 / 10^3 = 109 + (625 / 1000)$
- base 2: 1101101.101 = 1101101 + (101 / 1000)= 109 + 5/8 = 109.625
- Or can think of shifting the decimal point 109.625 = 109625/10³ = 109625 / 1000 (decimal) 1101101.101 = 1101101101 / 1000 (binary) = 877/8 = 109.625

IEEE – Bitwise Storage Size

- The number of bits for the mantissa and exponent.
 - The normal floating-point types are defined as:

Туре	Sign, a	Exponent, c	Mantissa, f	Representation
Single 32bit	1bit	8bits	23+1bits	$(-1)^{s} \times 1.f \times 2^{c-127}$ Decimal: ~8s.f. × 10 ^{~±38}
Double 64bit	1bit	11bits	52+1bits	$(-1)^{s} \times 1.f \times 2^{c-1023}$ Decimal: ~16s.f. × 10 ^{~±308}

- there are also "Extended" versions of both the single and double types, allowing even more bits to be used.
- the Extended types are not supported uniformly over a wide range of platforms; Single and Double are.

32-bit and 64-bit floating point

- Conventionally called single and double precision
 - C, C++ and Java: float (32-bit), double (64-bit)
 - Fortran: REAL (32-bit), DOUBLE PRECISION (64-bit)
 - or REAL(KIND(1.0e0)), REAL(KIND(1.0d0))
 - or REAL (Kind=4), REAL (Kind=8)
 - NOTHING TO DO with 32-bit / 64-bit operating systems!!!
- Single precision accurate to 8 significant figures
 - eg 3.2037743 E+03
- Double precision to 16
 - eg 3.203774283170437 E+03
- Fortran usually knows this when printing default format
 - C and Java often don't
 - depends on compiler

Limitations

|epcc|

- Numbers cannot be stored exactly
 - gives problems when they have very different magnitudes
- Eg 1.0E-6 and 1.0E+6
 - no problem storing each number separately, but when adding:

0.000001 + 1000000.0 = 1000000.000001 = 1.0000000001E6

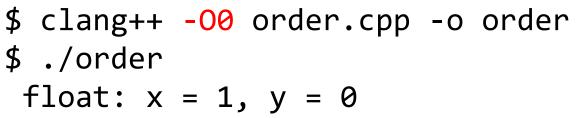
- in 32-bit will be rounded to 1.0E6
- So
 (0.000001 + 1000000.0) 1000000.0 = 0.0
 0.000001 + (1000000.0 1000000.0) = 0.000001
 - FP arithmetic is commutative but not associative!

Example – order matters!


```
#include <iostream>
                                          This code adds three
template <typename T>
                                          numbers together in a
void order(const char* name) {
                                          different order.
 T a, b, c, x, y;
                                          Single and double
 a = -1.0e10;
  b = 1.0e10;
                                          precision.
 c = 1.0;
 x = (a + b) + c;
 y = a + (b + c);
  std::cout << name << ": x = " << x << ", y = " << y << std::endl;</pre>
}
int main()
                         x = \left(-1.0 \times 10^{10} + 1.0 \times 10^{10}\right) + 1.0
{
 order<float>(" float");
 order<double>("double");
                         y = -1.0 \times 10^{10} + (1.0 \times 10^{10} + 1.0)
  return 0;
}
```

What is the answer?

The result. One



double: x = 1, y = 1

Special Values

lebcc

- We have seen that zero is treated specially
 - corresponds to all bits being zero (except the sign bit)
- There are other special numbers
 - infinity: which is usually printed as "Inf"
 - Not a Number: which is usually printed as "NaN"
- These also have special bit patterns

- Infinity is usually generated by dividing any finite number by 0.
 - although can also be due to numbers being too large to store
 - some operations using infinity are well defined, e.g. -3/ ∞ = -0
- NaN is generated under a number of conditions:

 ∞ + (- ∞), 0 × ∞ , 0/0, ∞/∞ , $\sqrt{(X)}$ where X < 0.0

- most common is the last one, eg x = sqrt(-1.0)

- Any computation involving NaN's returns NaN.
 - there is actually a whole set of NaN binary patterns, which can be used to indicate why the NaN occurred.

Exponent, e (unshifted)	Mantissa, f	Represents
000000	0	±0
000000	≠0	$0.f \times 2^{(1-bias)}$ [denormal]
000 < e < 111	Any	$1.f \times 2^{(e-bias)}$
111111	0	$\pm \infty$
111111	≠0	NaN

Most numbers are in standard form (middle row)

- have already covered zero, infinity and NaN
- denormal numbers are a special case not covered here

Implementations: C & FORTRAN

- Most C and FORTRAN compilers are fully IEEE 754 compliant.
 - compiler switches are used to switch on exception handlers.
 - these may be very expensive if dealt with in software.
 - you may wish to switch them on for testing (except inexact), and switch them off for production runs.
- But there are more subtle differences.
 - FORTRAN always preserves the order of calculations:
 - -A + B + C = (A + B) + C, always.
 - C compilers are free to modify the order during optimisation.
 - -A + B + C may become (A + B) + C or A + (B + C).
 - Usually, switching off optimisations retains the order of operations.

|epcc|

- Real numbers stored in floating-point format
- Conform to IEEE 754 standard
 - defines storage format
 - can be single (32-bit) and double (64-bit) precison
 - and the result of all arithmetical operations
- Lots of issues to be aware of...