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2 Basic Linear Algebra 

Overview 

Lecture will cover 
– why matrices and linear algebra are so important 

– basic terminology 

– Gauss-Jordan elimination 

– LU factorisation 

– error estimation 

– libraries 

 



Linear algebra 

In mathematics linear algebra is the study of 

linear transformations and vector spaces… 

…in practice linear algebra is the study of 

matrices and vectors 

Many physical problems can be formulated in 

terms of matrices and vectors 
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Health Warning 

Don’t let the terminology scare you 
– concepts quite straightforward, algorithms easily understandable 

– implementing the methods is often surprisingly easy 

– but numerous variations (often for special cases or improved 

numerical stability) lead to an explosion in terminology 

 

 



Basic matrices and vectors 
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Matrix 

 

Vector 

 

 

 

 

 

 

A matrix multiplied by a vector gives another vector 
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Linear Systems as Matrix Equations 

Many problems expressible as linear equations 
– two apples and three pears cost 40 pence 

– three apples and five pears cost 65 pence 

– how much does one apple or one pear cost? 

 

Express this as 

 

Or in matrix form 
 

– matrix x vector = vector 
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Standard Notation 

For a system of N equations in N unknowns 
 

 

 

 

 

 

– coefficients form a matrix A with elements aij 

– unknowns form a vector x with elements xi 

– solution forms a vector b with elements bi 

 

All linear equations have the form A x = b 
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Matrix Inverse 

A x = b implies A-1A x = x = A-1 b 
– simple formulae exist for N=2 

 

 

 

 

 

 

Rarely need (or want) to store the explicit inverse 
– usually only require the solution to a particular set of equations 

Algebraic inversion impractical for large N 
– use numerical algorithms such as Gaussian Elimination 
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Simultaneous Equations 

Equations are: 
 2a + 3 p = 40 (i) 

 3a + 5 p = 65 (ii) 

– computing 2 x (ii) - 3 x (i) gives p = 130 - 120 = 10 

– substitute in (i) gives a = 1/2 x (40 - 3 x 10) = 5 

Imagine we actually had 
2.00000 a + 3.00000 p = 40.00000 (i) 

4.00000 a + 6.00001 p = 80.00010 (ii) 

(ii) - 2 x (i) gives (6.00001 - 6.00000) p = (80.00010 - 80.00000) 

– cancellations on both sides may give inaccurate numerical results 

– value of p comes from multiplying a huge number by a tiny one 

How can we tell this will happen in advance? 
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Matrix Conditioning 

Characterise a matrix by its condition number 
– gives a measure of the range of the floating point numbers that 

will be required to solve the system of equations 

A well-conditioned matrix 
– has a small condition number 

– and is numerically easy to solve 

An ill-conditioned matrix 
– has a large condition number 

– and is numerically difficult to solve 

A singular matrix 
– has an infinite condition nymber 

– is impossible to solve numerically (or analytically) 
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Calculating the Condition Number 

Easy to compute condition no. for small problems 
 

 2a + 3 p = 40 

 3a + 5 p = 65 

 

– has a condition number of 46 (ratio of largest/smallest eigenvalue) 

 

 2.00000 a + 3.00000 p = 40.00000 

 4.00000 a + 6.00001 p = 80.00010 

 

– has condition number of 8 million! 

 

Very hard to compute for real problems 
– methods exist for obtaining good estimates 
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Relevance of Condition Number 

Gives a measure of the range of the scales of 

numbers in the problem 
– eg if condition number = 46, largest number required in 

calculation will be roughly 46 times larger than smallest 

 

– if condition number = 107, this may be a problem for single 

precision where we can only resolve one part in 108 

 

May require higher precision to solve ill-

conditioned problems 
– in addition to a robust algorithm 
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Gauss-Jordan Elimination 

The technique you may have learned at school 
– subtract rows of A from other rows to eliminate off-diagonals 

– must perform same operations to RHS (i.e. b) 

 

 

 

 

 

 

Pivoting 
– using row p as the pivot row (p=1 above) implies division by app 

– very important to do row exchange to maximise app 

– this is partial pivoting (full pivoting includes column exchange) 

 

sweep 

eliminate 
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Observations 

Gauss-Jordan is a simple direct method 
– we know the operation count at the outset, complexity O(N3) 

 

Possible to reduce A to purely diagonal form 
– solving a diagonal system is trivial 

 

 

 

 

 

 

 

– better to reduce to upper triangular - Gaussian Elimination 
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Operate on active sub-matrix of decreasing size 

 
 

 

 

 

Solve resulting system with back-substitution 
– can compute x4 first, then x3, then x2, etc... 

Gaussian Elimination 
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LU Factorisation 

Gaussian Elimination is a practical method 
– must do partial pivoting and keep track of row permutations 

– restriction: must start a new computation for every different b 

 

Upper-triangular system U x = b easy to solve 
– likewise for lower-triangular L x = b using forward-substitution 

 

Imagine we could decompose A = LU 
– A x = (LU) x = L (Ux) = b 

– first solve Ly = b then Ux = y 

– each triangular solve has complexity O(N2) 

 

But how do we compute the L and U factors? 
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Computing L and U 

Clearly only have N2 unknowns  
– assume L is unit lower triangular and U is upper triangular 

 

 
 

 

– writing out in full  
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Implementation 

Can pack LU factors into a single matrix 

 

 

 

 

RHS computed in columns 
– once lij or uij is calculated, aij is not needed any more 

– can therefore do LU decomposition in-place 

– elements of A over-written by L and U 

– complexity is O(N3) 



19 Basic Linear Algebra 

Crout’s Algorithm 

Replaces A by its LU decomposition 
– implements pivoting, ie decomposes row permutation of A 

– computation of lij requires division by ujj 

– can promote a sub-diagonal lij as appropriate 

– essential for stability with large N 

 

Loop over columns j 
– compute uij for i = 1, 2 ... j 

– compute lij for i = j+1, j+2 .. N 

– pivot as appropriate before proceeding to next column 

 

See, e.g., Numerical Recipes section 2.3 
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Procedure 

To solve Ax = b 
– decompose A into L and U factors via Crout’s algorithm 

– replaces A in-place 

– set x = b 

– do in-place solution of Lx = x (forward substitution) 

– do in-place solution of Ux = x (backward substitution) 

Advantages 
– pivoting makes the procedure stable 

– only compute LU factors once for any number of vectors b 

– subsequent solutions are O(N2) after initial O(N3) factorisation 

– to compute inverse, solve for a set of N unit vectors b 

– determinant of A can be computed from the product of uii 
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Quantifying the Error 

We hope to have solved Ax = b 
– there will inevitably be errors due to limited precision 

– can quantify this by computing the residual vector r = b - Ax 

– typically quote the root-mean-square residue 

 

 

 

– length defined by L2 norm (“two-norm”) - other norms exist 

 

 

 

^ 



Linear algebra libraries 

Linear Algebra is a well constrained problem 
– can define a small set of common operations 

– implement them robustly and efficiently in a library 

– mainly designed to be called from Fortran (see later ...) 

Often seen as the most important HPC library 
– eg LINPACK benchmark is standard HPC performance metric 

– solve a linear system with LU factorisation 

– possible to achieve performance close to theoretical peak 

Linear algebra is unusually efficient 
– LU decomposition has O(N3) operations for O(N2) memory 

loads 



BLAS 

Basic Linear Algebra Subprograms 
– Level 1: vector-vector operations (e.g. x·y) 

– Level 2: matrix-vector operations (e.g. Ax) 

– Level 3: matrix-matrix operations (e.g. AB) 

 (x, y vectors, A, B matrices) 

Example:        SAXPY routine 

single precision x + y      a 
(scalar) 

y is replaced “in-place” with a x + y 



LAPACK 

LAPACK is built on top of BLAS libraries 
– Most of the computation is done with the BLAS libraries 

Original goal of LAPACK was to improve upon 

previous libraries to run more efficiently on 

shared memory and multi-layered systems 
– Spend less time moving data around! 

LAPACK uses BLAS 3 instead of BLAS 1 

– matrix-matrix operations more efficient than vector-vector 

Always use libraries for Linear Algebra 

 



LU factorisation 

LU factorisation 
– call SGETRF(M, N, A, LDA, IPIV, INFO) 

– does an in-place LU factorisation of M by N matrix A 

• we will always consider the case M = N 

– A can actually be declared as REAL A(NMAX,MMAX) 

• routine operates on M x N submatrix 

• must tell the library the Leading Dimension of A, ie set 
LDA=NMAX 

– INTEGER IPIV(N) returns row permutation due to pivoting 

– error information returned in the integer INFO 

 



Solving: Forward/backward 

substituion 

Forward / backward substitution 
– call 

SGETRS(TRANS,N,NRHS,A,LDA,IPIV,B,LDB,INFO) 

– expects a factored A and IPIV from previous call to SGETRF 

– solves for multiple right-hand-sides, ie B is N x NRHS 

– we will only consider NRHS=1, ie RHS is the usual vector b 

– solution x is returned in b (ie original b is destroyed) 

Options exist for precise form of equations 
– specified by character variable TRANS 

– ‘N’ (Normal), ‘T’ (Transpose) 

 

 A x = b AT x = b 
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Summary 

Dense matrices arise from linear equations 
– standard notation is Ax = b 

Matrices characterised by their condition number 
– equations difficult to solve numerically have large condition number 

• an ill-conditioned matrix 

– may lead to large errors in our solution so always quantify the error 

Have covered direct solution methods for Ax = b 
– all are basically variants of Gaussian Elimination 

– rather than storing A-1, compute the LU factors of A 

– can then solve further equations Ax = c, Ax = d, ... at little extra cost 

– the larger the condition number, the harder the problem 

– pivoting is essential in practice for numerical stability 

Always use libraries for Linear Algebra 
 

 


