
David Henty, Iain Bethune, Dan Holmes
EPCC, University of Edinburgh

MPI
Optimisation

Advanced Parallel Programming

Overview

Can divide overheads up into four main categories:

• Lack of parallelism

• Load imbalance

• Synchronisation

• Communication

Lack of parallelism

• Tasks may be idle because only a subset of tasks are
computing

• Could be one task only working, or several.
– work done on task 0 only
– with split communicators, work done only on task 0 of each

communicator

• Usually, the only cure is to redesign the algorithm to exploit
more parallelism.

Extreme scalability

• Note that sequential sections of a program which scale as
O(p) or worse can severely limit the scaling of codes to very
large numbers of processors.

• Let us assume a code is perfectly parallel except for a small
part which scales as O(p)
– e.g. a naïve global sum as implemented for the MPP pi example!

• Time taken for parallel code can be written as

Tp = Ts((1-a)/p + ap)

where Ts is the time for the sequential code and a is the
fraction of the sequential time in the part which is O(p).

• Compare with Amdahl’s Law

Tp = Ts((1-a)/p + a)

For example, take a = 0.0001

For 1000 processors, Amdahl’s Law gives a speedup of ~900

For an O(p) term, the maximum speedup is ~50 (at p =100).

• Note: this assume strong scaling, but even for weak scaling
this will become a problem for 10,000+ processors

Load imbalance

• All tasks have some work to do, but some more than
others....

• In general a much harder problem to solve than in shared
variables model
– need to move data explicitly to where tasks will execute

• May require significant algorithmic changes to get right

• Again scaling to large processor counts may be hard
– the load balancing algorithms may themselves scale as O(p) or

worse.

• We will look at some techniques in more detail later in the
module.

• MPI profiling tools report the amount of time spent in each
MPI routine

• For blocking routines (e.g. Recv, Wait, collectives) this time
may be a result of load imbalance.

• The task is blocked waiting for another task to enter the
corresponding MPI call
– the other tasks may be late because it has more work to do

• Tracing tools often show up load imbalance very clearly
– but may be impractical for large codes, large task counts, long

runtimes

Synchronisation

• In MPI most synchronisation is coupled to communication
– Blocking sends/receives
– Waits for non-blocking sends/receives
– Collective comms are (mostly) synchronising

• MPI_Barrier is almost never required for correctness
– can be useful for timing
– can be useful to prevent buffer overflows if one task is sending a lot of

messages and the receiving task(s) cannot keep up.
– think carefully why you are using it!

• Use of blocking point-to-point comms can result in
unnecessary synchronisation.
– Can amplify “random noise” effects (e.g. OS interrupts)
– see later

Communication

• Point-to-point communications

• Collective communications

• Task mapping

Small messages

• Point to point communications typically incur a start-up cost
– sending a 0 byte message takes a finite time

• Time taken for a message to transit can often be well
modeled as

T = Tl + NbTb

where Tl is start-up cost or latency, Nb is the number of bytes
sent and Tb is the time per byte. In terms of bandwidth B:

T = Tl + Nb/B

• Faster to send one large message vs many small ones
– e.g. one allreduce of two doubles vs two allreduces of one double
– derived data-types can be used to send messages with a mix of types

Communication patterns

• Can be helpful, especially when using trace analysis tools, to
think about communication patterns
– Note: nothing to do with OO design!

• We can identify a number of patterns which can be the cause
of poor performance.

• Can be identified by eye, or potentially discovered
automatically
– e.g. the SCALASCA tool highlights common issues

Late Sender

• If blocking receive is posted before matching send, then the
receiving task must wait until the data is sent.

Send

Recv

Out-of-order receives

• Late senders may be the result of having blocking receives
in the wrong order.

Send

Recv Recv

Send

Send

Recv Recv

Send

Late Receiver

• If send is synchronous, data cannot be sent until receive is
posted
– either explicitly programmed, or chosen by the implementation

because message is large
– sending task is delayed

Send

Recv

Late Progress

• Non-blocking send returns, but implementation has not yet
sent the data.
– A copy has been made in an internal buffer

• Send is delayed until the MPI library is re-entered by the
sender.
– receiving task waits until this occurs

Isend

Recv

Recv

Non-blocking comms

• Both late senders and late receivers may be avoidable by
more careful ordering of computation and communication

• However, these patterns can also occur because of “random
noise” effects in the system (e.g. network congestion, OS
interrupts)
– not all tasks take the same time to do the same computation
– not all messages of the same length take the same time to arrive

• Can be beneficial to avoid blocking by using all non-blocking
comms entirely (Isend, Irecv, WaitAll)
– post all the Irecv’s as early as possible

Halo swapping

loop many times:

irecv up; irecv down

isend up; isend down

update array

wait all

do calculations involving halo

end loop

• Receives not necessarily ready in advance
– remember your recv’s match someone else’s sends!

Collective communications

• Can identify similar patterns for collective comms...

Late Broadcaster

• If broadcast root is late, all other tasks have to wait

• Also applies to Scatter, Scatterv

Bcast

Bcast

Bcast

Early Reduce

• If root task of Reduce is early, it has to wait for all other tasks
to enter reduce

• Also applies to Gather, GatherV

Reduce

Reduce

Reduce

Wait at NxN

• Other collectives require all tasks to arrive before any can
leave.
– all tasks wait for last one

• Applies to Allreduce, Reduce_Scatter, Allgather, Allgatherv,
Alltoall, Alltoallv

Alltoall

Alltoall

Alltoall

Collectives

• Collective comms are (hopefully) well optimised for the
architecture
– Rarely useful to implement them your self using point-to-point

• However, they are expensive and force synchronisation of
tasks
– helpful to reduce their use as far as possible
– e.g. in many iterative methods, a reduce operation is often needed to

check for convergence
– may be beneficial to reduce the frequency of doing this, compared to

the sequential algorithm

• Non-blocking collectives added in MPI 3.0
– may not be that useful in practice …

Task mapping

• On most systems, the time taken to send a message
between two processors depends on their location on the
interconnect.

• Latency may depend on number of hops between
processors

• Bandwidth may also vary between different pairs of
processors

• In an SMP cluster, communication is normally faster (lower
latency and higher bandwidth) inside a node (using shared
memory) than between nodes

• Communication latency
often behaves as a fixed
cost + term proportional to

number of hops.

• The mapping of MPI tasks to processors can have an effect
on performance

• Want to have tasks which communicate with each other a lot
close together in the interconnect.

• No portable mechanism for arranging the mapping.
– e.g. on Cray XE supply options to aprun

• Can be done (semi-)automatically:
– run the code and measure how much communication is done

between all pairs of tasks
– tools can help here
– find a near optimal mapping to minimise communication costs

• On systems with no ability to change the mapping, we can
achieve the same effect by creating communicators
appropriately.
– assuming we know how MPI_COMM_WORLD is mapped

• MPI_CART_CREATE has a reorder argument
– if set to true, allows the implementation to reorder the task to give a

sensible mapping for nearest-neighbour communication
– unfortunately many implementations do nothing, or do strange, non-

optimal re-orderings!

• … or use MPI_COMM_SPLIT

