
Parallel Programming 
Libraries and implementations 



Outline 

• MPI – distributed memory de-facto standard 
• Using MPI 

• OpenMP – shared memory de-facto standard 
• Using OpenMP 

• CUDA – GPGPU de-facto standard 
• Using CUDA 

• Others 
• Hybrid programming 

• Xeon Phi Programming 

• SHMEM 

• PGAS 



MPI Library 

Distributed, message-passing programming 



Message-passing concepts 



Explicit Parallelism 

• In message-passing all the parallelism is explicit 

• The program includes specific instructions for each communication 

• What to send or receive 

• When to send or receive 

• Synchronisation 

• It is up to the developer to design the parallel 

decomposition and implement it 

• How will you divide up the problem? 

• When will you need to communicate between processes? 

 



Message Passing Interface (MPI) 

• MPI is a portable library used for writing parallel programs 
using the message passing model 

• You can expect MPI to be available on any HPC platform you use 

• Based on a number of processes running independently in 
parallel 

• HPC resource provides a command to launch multiple processes 
simultaneously (e.g. mpiexec, aprun) 

• There are a number of different implementations but all should 
support the MPI 2 standard 

• As with different compilers, there will be variations between 
implementations but all the features specified in the standard should 
work. 

• Examples: MPICH2, OpenMPI 



Point-to-point communications 

• A message sent by one process and received by another 

• Both processes are actively involved in the 

communication – not necessarily at the same time 

• Wide variety of semantics provided: 

• Blocking vs. non-blocking 

• Ready vs. synchronous vs. buffered 

• Tags, communicators, wild-cards 

• Built-in and custom data-types 

• Can be used to implement any communication pattern 

• Collective operations, if applicable, can be more efficient 



Collective communications 

• A communication that involves all processes 
• “all” within a communicator, i.e. a defined sub-set of all processes 

• Each collective operation implements a particular 
communication pattern 
• Easier to program than lots of point-to-point messages 

• Should be more efficient than lots of point-to-point messages 

• Commonly used examples: 
• Broadcast 

• Gather 

• Reduce 

• AllToAll 

 



Example: MPI HelloWorld 

int main(int argc, char* argv[]) 
{ 
   int size,rank; 
 
   MPI_Init(&argc, &argv); 
   MPI_Comm_size(MPI_COMM_WORLD, &size); 
   MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
 
   printf("Hello world - I'm rank %d of %d\n", rank, size); 
 

  MPI_Finalize(); 
  return 0; 
} 



OpenMP 

Shared-memory parallelism using directives 



Shared-memory concepts 

• Threads “communicate” by having access to the same 

memory space 

• Any thread can alter any bit of data 

• No explicit communications between the parallel tasks 



OpenMP 

• OpenMP is an Application Program Interface (API) for 

shared memory programming 

• You can expect OpenMP to be supported by all compilers on all 

HPC platforms 

• Not a library interface like MPI 

• You interact through directives in your program source rather than 

calling functions/subroutines 

• Parallelism is less explicit than MPI 

• You specify which parts of the program you want to parallelise and 

the compiler produces a parallel executable 



Loop-based parallelism 

• The most common form of OpenMP parallelism is to 
parallelise the work in a loop 
• The OpenMP directives tell the compiler to divide the iterations of 

the loop between the threads 

 

#pragma omp parallel shared(a,b,c,chunk) private(i) 

{ 

   #pragma omp for schedule(dynamic,chunk) nowait 

   for (i=0; i < N; i++) { 

     c[i] = a[i] + b[i]; 

   } 

} 



Addition example 

asum = 0.0 

#pragma omp parallel \ 

shared(a,N) private(i) \ 

reduction(+:asum) 

{ 

   #pragma omp for 

   for (i=0; i < N; i++) 

   { 

     asum += a[i]; 

   } 

} 

printf(“asum = %f\n”, asum); 

loop: i = istart,istop 

  myasum += a[i] 

end loop 

asum 

asum=0 



CUDA 

Programming GPGPU Accelerators 



CUDA 

• CUDA is an Application Program Interface (API) for 
programming NVIDIA GPU accelerators 
• Proprietary software provided by NVIDIA. Should be available on 

all systems with NVIDIA GPU accelerators 

• Write GPU specific functions called kernels 

• Launch kernels using syntax within standard C programs 

• Includes functions to shift data between CPU and GPU memory 

• Similar to OpenMP programming in many ways in that the 
parallelism is implicit in the kernel design and launch 

• More recent versions of CUDA include ways to 
communicate directly between multiple GPU accelerators 
(GPUdirect) 



Example: 

// CUDA kernel. Each thread takes care of one element of c 

__global__ void vecAdd(double *a, double *b, double *c, int n) 

{ 

    // Get our global thread ID 

    int id = blockIdx.x*blockDim.x+threadIdx.x; 

  

    // Make sure we do not go out of bounds 

    if (id < n) 

        c[id] = a[id] + b[id]; 

} 

 

// Called with 

vecAdd<<<gridSize, blockSize>>(d_a, d_b, d_c, n); 



OpenCL 

• An open, cross-platform standard for programming 

accelerators 

• includes GPUs, e.g. from both NVIDIA and AMD 

• also Xeon Phi, Digital Signal Processors, ... 

 

• Comprises a language + library 

 

• Harder to write than CUDA if you have NVIDIA GPUs 

• but portable across multiple platforms 

• although maintaining performance is difficult 

 



Others 

Niche and future implementations 



Other parallel implementations 

• Partitioned Global Address Space (PGAS) 

• Coarray Fortran, Unified Parallel C, Chapel 

• Cray SHMEM, OpenSHMEM 

• Single-sided communication library  

• OpenACC 

• Directive-based approach for programming accelerators 

 



Summary 



Parallel Implementations 

• Distributed memory programmed using MPI 

• Shared memory programmed using OpenMP 

• GPU accelerators most often programmed using CUDA 

 

• Hybrid programming approaches (e.g. MPI/OpenMP) are 

becoming more common 

• They match the hardware layout more closely 

 

• A number of other, more experimental approaches are 

available 


