

Directives

* Mistyping the sentinel (e.g. 'OMP or #pragma opm)

typically raises no error message.
— Be careful!

* The macro OPENMP is defined if code is compiled with the
OpenMP switch.

* You can use this to conditionally compile code so that it
works with and without OpenMP enabled.

* If you want to link dummy OpenMP library routines into
sequential code, there is code in the standard you can copy
(Appendix B)

Parallel regions =0 \ o

* The overhead of executing a parallel region is typically in the

10-100 microseconds range
— depends on compiler, hardware, no. of threads

* You can use the EPCC OpenMP microbenchmarks to do
detailed measurements of overheads on your system.

* Download from www.epcc.ed.ac.uk/research/computing/

performance-characterisation-and-benchmarking

* The sequential execution time of a section of code has to be
several times this to make it worthwhile parallelising.

* |f a code section is only sometimes long enough, use the if

clause to decide at runtime whether to go parallel or not.
— Overhead on one thread is typically much smaller (<1us).

B)

T LM

RAW s
‘ -

Is my loop parallelisable?

* Quick and dirty test for whether the iterations of a loop are
iIndependent.

* Run the loop in reverse order!!

* Not infallible, but counterexamples are quite hard to
construct.

-
—

»‘.-‘- S -
Y : T R
AN =
-

Loops and nowait

#pragma omp parallel * This is safe so Iong as
{ the number of

#pragma omp for schedule(static) nowait iterations in the two
for (i=0;i<N;i++) {
loops and the

a[i] =
} schedules are the
#pragma omp for schedule(static) same (mUSt be StatiC,
for (i=0;i<N;i++) { but you can specify a
- = alz] chunksize)

* Guaranteed to get
same mapping of
iterations to threads.

-
—

Default schedule 1ina “W‘

* Note that the default schedule for loops with no schedule

clause is implementation defined.
* Doesn’t have to be STATIC.
* In practice, in all implementations | know of, it is.

* Nevertheless you should not rely on this!

Tuning the chunksize 2 ot o

* Tuning the chunksize for static or dynamic schedules can be
tricky because the optimal chunksize can depend quite
strongly on the number of threads.

* |t's often more robust to tune the number of chunks per

thread and derive the chunksize from that.
— chunksize expression does not have to be a compile-time constant

SINGLE or MASTER? i i o

* Both constructs cause a code block to be executed by one
thread only, while the others skip it: which should you use?

* MASTER has lower overhead (it's just a test, whereas
SINGLE requires some synchronisation).

 But beware that MASTER has no implied barrier!

* |If you expect some threads to arrive before others, use
SINGLE.

‘STR AR
Fortran 90 array syntax AU ml

* (Can’t use loop directives directly to parallelise Fortran 90 array syntax

* WORKSHARE is a worksharing directive (!) which allows parallelisation
of Fortran 90 array operations, WHERE and FORALL constructs.

* Syntax:
! SOMP WORKSHARE
block

1SOMP END WORKSHARE [NOWAIT]

" T)

Workshare directive (cont.)i" @i

10

* Simple example
REAL A(100,200), B(100,200), C(100,200)

1SOMP PARALLEL

! SOMP WORKSHARE
A=B+C

!SOMP END WORKSHARE

1SOMP END PARALLEL

* N.B. No schedule clause: distribution of work units to threads
IS entirely up to the compiler!

* If the compiler doesn’'t do a good job, you may need to
expose a loop explicitly.

* There is a synchronisation point at the end of the workshare:
all threads must finish their work before any thread can
proceed

RN - 10

Workshare directive (con‘t'.q)-m“"*m

Can also contain array intrinsic functions, WHERE and FORALL
constructs, scalar assignment to shared variables, ATOMIC and
CRITICAL directives.

No branches in or out of block.

No function calls except array intrinsics and those declared
ELEMENTAL.

Combined directive:

!SOMP PARALLEL WORKSHARE

block

!SOMP END PARALLEL WORKSHARE

RN - 11

Workshare directive (ctiht“‘“‘wml

* Example:

| §OMP PARALLEL WORKSHARE
A=B+C
WHERE (D .ne. 0) E = 1/D
1 $OMP ATOMIC
t = t + SUM(F)
FORALL (i=l:n, X(i)=0) X(i)= 1
| $OMP END PARALLEL WORKSHARE

RN B 0| 12

Data sharing attributes AN L “W‘

* Don’t forget that private variables are uninitialised on entry to

parallel regions!

* Canuse firstprivate, butit's more likely to be an error.

* Always, always use default (none)

— | mean always. No exceptions!
— Everybody suffers from “variable blindness”.

Spot the bug! L L lepcCL

#pragma omp parallel for shared (a,b,c,d,N,M)\

private (temp)
for (1=0;1<N;i++) {
for (jJ=0;j<M;j++) {
temp = b[i]*c[]]’
al[i][j] = temp * temp + d[i];

}

* May always get the right result with sufficient compiler
optimisation!

Huge long loops AR LS

* \What should | do in this situation?

do i=1l,n
..... several pages of code referencing 100+

variables

end do

* Determining the correct scope (private/shared/reduction) for
all those variables is tedious, error prone and difficult to test

adequately.

-
—

A - YA T+
w BA\J\

* Refactor sequential code to

do i=1l,n
call loopbody(......)
end do

Make all loop temporary variables local to loopbody
* Pass the rest through argument list
* Much easier to test for correctness!

* Then parallelise......

-
—

B T - ™]
. gl
Reduction race trap 8 W‘

#pragma omp parallel shared(sum, b)
{

sum = 0.0;
#pragma omp for reduction (+:sum)
for (i=0;i<n:i++) {

sum += b[1i];

}

* There is a race between the initialisation of sum and the
updates to it at the end of the loop.

Private global variables

double foo; extern double foo;
#pragma omp parallel \ double sumfunc (void) {
private (foo)
{ ... = foo;

foo =

a = somefunc() }

* Unspecified whether the reference to foo in somefunc is to the
original storage or the private copy.

* Unportable and therefore unusable!

* If you want access to the private copy, pass it through the
argument list.

R | &)

-

Missing SAVE or static

* Compiling my sequential code with the OpenMP flag caused
it to break: what happened?

°* You may have a bug in your code which is assuming that the

contents of a local variable are preserved between function

calls.

— compiling with OpenMP flag forces all local variables to be stack
allocated and not heap allocated

— might also cause stack overflow

* Need to use SAVE or static correctly
— but these variables are then shared by default
— may need to make them threadprivate

— “first time through” code may need refactoring (e.g. execute it before
the parallel region)

\% 8 B)

>A‘ - W I\
~-‘ ¥ “
A -
\
-

Critical and atomic

* You can’t protect updates to shared variables in one place
with atomic and another with critical, if they might contend.

* No mutual exclusion between these
— critical protects code, atomic protects memory locations.

#pragma omp parallel
{

#pragma omp critical
a+=2;

#pragma omp atomic
a+=3;

)
RN RS) 0

Allocating storage based on number ofm

* Sometimes you want to allocate some storage whose size is

determined by the number of threads.

— but how do you know how many threads the next parallel region will
use?

* Cancall omp get max threads () which returns the
value of the nthreads-var ICV. The number of threads used

for the next parallel region will not exceed this
— except if a num threads clause is used.

* Note that the implementation can always deliver fewer

threads than this value

— if your code depends on there actually being a certain number of
threads, you should always call omp get num threads() to

check

S . A - !.
- A

B
i
3 »
-
= .

Stack size

* |f you have large private data structures, it is possible to run
out of stack space.

* The size of thread stack apart from the master thread can be
controlled by the OMP STACKSIZE environment variable.

* The size of the master thread’s stack is controlled in the

same way as for sequential program (e.g. using ulimit).

— OpenMP can’t control this as by the time the runtime is called it’s too
late!

: TR R -
Environment for performance —\d

* There are some environment variables you should set to

maximise performance.
— don’t rely on the defaults for these!

OMP_WAIT POLICY=active

* Encourages idle threads to spin rather than sleep

OMP DYNAMIC=false

* Don't let the runtime deliver fewer threads than you asked for
OMP_PROC_BIND=true

* Prevents threads migrating between cores

Debugqging tools

* Traditional debuggers such as DDT or Totalview have
support for OpenMP

* This is good, but they are not much help for tracking down

race conditions
— debugger changes the timing of event on different threads

* Race detection tools work in a different way

— capture all the memory accesses during a run, then analyse this data
for races which might have occured.

* Intel Inspector XE
* Oracle Solaris Studio (collect and discover tools, also works
on Linix)

5 ' s -
- :

Profilers - Ny o

e Standard profilers (gprof, IDE profilers) can be confusing

— they typically accumulate the time spent in functions across all
threads.

* You can get a lot out of using timers (omp get wtime ())

* Add timers round every parallel region, and round the whole

code.

— work out which parallel regions have the worst speedup

— don’t assume the time spent outside parallel regions is independent of
the number of threads.

Performance tools

* Vampir/Vampirtrace
— timeline traces can be very useful for visualising load balance

Intel Viune

* Scalasca
— breaks down overheads into different categories

* Rogue Wave Threadspotter
— statistical memory profiler
— uses tracing and simulation

— very good for finding cache/memory problems, including false
sharing.

