OPTIMISING PARALLEL PROGRAMS ON XEON PHI

Adrian Jackson adrianj@epcc.ed.ac.uk

Specialised Optimisations

- Some optimisation are specific to Xeon Phi only
 - Offloading
 - MPI performance
 - Thread and process placement
 - Filesystems

Offload memory

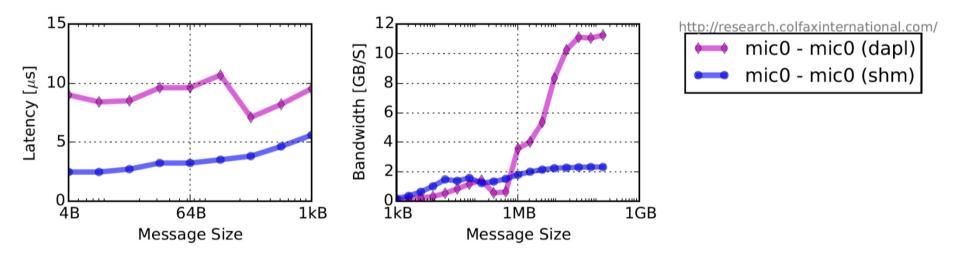
 By default memory allocated for all data before offload and deallocated on completion of offload

• Can use offload_transfer directive to explicitly manage data #pragma offload_transfer target(mic:1) in(a) !dir\$ offload_transfer target(mic:1) in(a)

Can specify allocation and free status for device memory
 !dir\$ offload target(mic:0) in(p : alloc_if(.true.) free_if(.false.))
 #pragma offload target(mic) out(p : alloc_if(1) free_if(0))

- Can be combined with length attribute (length(0) would specify no transfer)
- Also possible to send data asynchronously using signal and wait attributes/directives
- Can get information on data transfer export OFFLOAD_REPORT=2

MPI fabric choice


- Intel MPI can choose different mechanisms for sending data:
 - shm: Shared-memory
 - dapl: DAPL-capable network fabric (Infiniband etc...)
 - ofa: OFA-capable network fabric (Infiniband etc...)
 - tcp: TCP/IP-capable network fabrics (Ethernet etc...)
- Can specify what fabric to use:

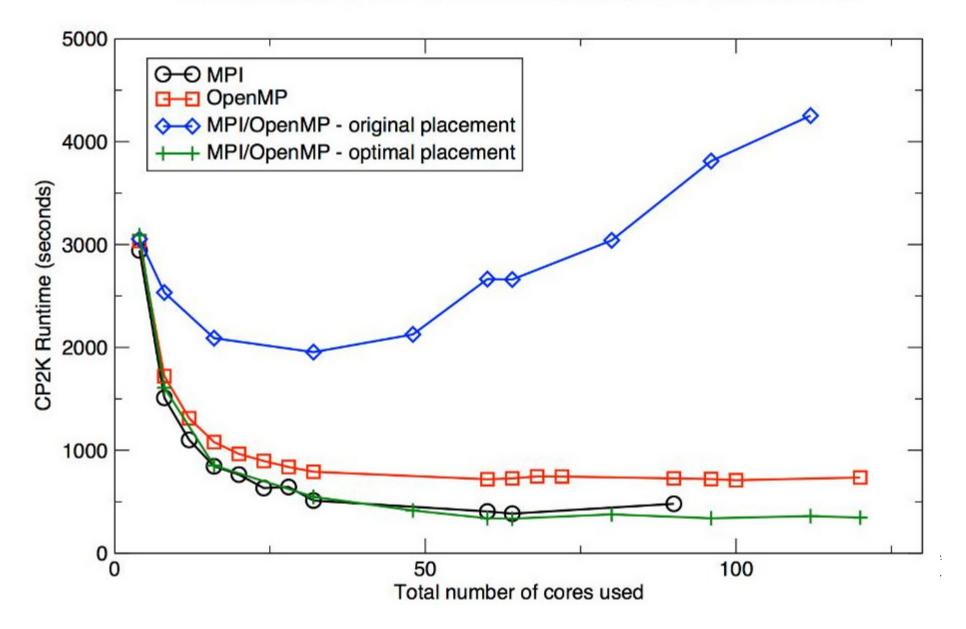
export I_MPI_FABRICS=shm:dapl

MPI fabric choice

- By default inside single Phi:
 - If dapl is installed (or infiniband card installed)
 - shm:dapl

May be beneficial in some circumstances to select a specific one

Thread placement


• KMP_AFFINITY variable controls thread placement export KMP_AFFINITY=[attribute]

Attribute can be:

- compact, scatter, balanced, **Or** explicit
- Can specify granularity as well
- fine, thread, and core (default)
 export KMP_AFFINITY=compact, granularity=fine
 export KMP_AFFINITY=scatter
- Compute bound application:
 - compact (2 or more threads per core)
- Bandwidth-bound application:
 - scatter (1 thread per core)

Performance of CP2K H2O-64 benchmark on the Xeon Phi

File systems

- RAM file system
 - Stored in memory
 - Fastest
 - Volatile
- Local host drives
 - Mount disk from host on Xeon Phi
 - Persistent, not as fast as RAM file system
- Network storage
 - Gives access to larger data systems
 - Even slower

Conclusions

- Setup of hardware and software on Phi can make performance difference
 - Communication hardware or libraries
 - Filesystems
- Placement of threads critical for performance
- If offloading, looking at data persistence is a good optimization option

