
Case Study: Modal2d Surveying the Code Making it Offloadable Xeon Phi Performance

Offload Mode Case Study

James Briggs

1COSMOS DiRAC

April 28, 2015

Case Study: Modal2d Surveying the Code Making it Offloadable Xeon Phi Performance

Case Study: Modal2d

MODAL is an early universe
simulation and analysis code used
to probe the Cosmic Microwave
Background (CMB).

Analyses higher-order correlation
functions beyond the power
spectrum.

Novel algorithm for efficient mode
expansion to measure reconstruct
the CMB bispectrum for the first
time.

Fast and efficient way to probe
cosmological data for hints of new
physics in the early universe.

Bispectrum of CMB. Source: Planck 2013
results. XXIV. Constraints on primordial
non-Gaussianity

Case Study: Modal2d Surveying the Code Making it Offloadable Xeon Phi Performance

Surveying the Code

Original code is pure C and parallelised with MPI only.

Already vectorised the code on Xeon to great success and there is enough
potential parallelism for threads ⇒ great Xeon Phi potential?

Library dependencies – GSL, iniparser, FFTW – for initialisation and I/O.
(Outside of main loop).

Compiling for native with -mmic tedious because I need to compile the external
libraries for Xeon Phi too.

Likely less tedious to test Xeon Phi with offload than native.

Case Study: Modal2d Surveying the Code Making it Offloadable Xeon Phi Performance

Pseudo-code

Want to offload the computationally most expensive part.

Pseudo-code for main loop:

MPI for n i n p r imo r i d a l mode s :
MPI for m i n l a t e mode s :

y = doub l e [x s i z e]
f o r x i n range (0 , x s i z e) :

y [i] += x [i]∗ x [i] ∗ gamma pt (n ,m, i) ;
gamma [n] [m] = g s l i n t e g r a t e (x [] , y []) ;

MPI Reduce (gamma [] []) ;

Output = gamma[][].

The n and m loops are decomposed over MPI tasks. Typical size O(1000).

gamma pt routine has a lot of work and is well vectorised.

Case Study: Modal2d Surveying the Code Making it Offloadable Xeon Phi Performance

Making it Offloadable (1/3)

MPI for n i n p r imo r i d a l mode s :
MPI for m i n l a t e mode s :

y = doub l e [x s i z e]
f o r x i n range (0 , x s i z e) :

y [i] += x [i]∗ x [i] ∗ gamma pt (n ,m, i) ;
gamma [n] [m] = g s l i n t e g r a t e (x [] , y []) ;

MPI Reduce (gamma [] []) ;

Integration has GSL dependency.

Negligible in profile ⇒ write my own integration routine and remove the
dependency.

Case Study: Modal2d Surveying the Code Making it Offloadable Xeon Phi Performance

Making it Offloadable (2/3)

MPI for n i n p r imo r i d a l mode s :
MPI for m i n l a t e mode s :

y = doub l e [x s i z e]
f o r x i n range (0 , x s i z e) :

y [i] += x [i]∗ x [i] ∗ gamma pt (n ,m, i) ;
gamma [n] [m] = my i n t e g r a t e (x [] , y []) ;

MPI Reduce (gamma [] []) ;

Integration has GSL dependency.

Negligible in profile ⇒ write my own integration routine and remove the
dependency.

Case Study: Modal2d Surveying the Code Making it Offloadable Xeon Phi Performance

Making it Offloadable (3/3)

Add offload pragma before main loop...

#pragma o f f l o a d t a r g e t (mic : 0) \
i n o u t (gamma : l e n g t h (N∗M) ALLOC FREE) \
i n (p r imo rd i a l mode s , l a t e modes , mp i v a r s)

MPI for n i n p r imo r i d a l mode s :
MPI for m i n l a t e mode s :

y [0 : x s i z e] = 0 . 0 ;
f o r x i n range (0 , x s i z e) :

y [i] += x [i]∗ x [i] ∗ gamma pt (n ,m, i) ;
gamma [n] [m] = my i n t e g r a t e (x [] , y []) ;

// end o f f l o a d r e g i o n
MPI Reduce (gamma [] []) ;

Done? Nope. Just starting!

Case Study: Modal2d Surveying the Code Making it Offloadable Xeon Phi Performance

Tracking Down the Offloadables (1/3)

Doesn’t compile! – Missing symbols.

Need to track down all the functions and global variables used in the main loop
and declare them offloadable:

a t t r i b u t e ((t a r g e t (mic)))
doub l e gamma pt (i n t n , i n t m, i n t i) ;

This part can be fiddly. Help:

Missing symbols will be found at compile time.
ctags with Vim or Emacs very useful for chasing down dependencies.
IDE could also have useful tools to help do this.

Case Study: Modal2d Surveying the Code Making it Offloadable Xeon Phi Performance

Tracking Down the Offloadables (2/3)

Code now compiles, but the result is garbage!

Declaring offloadable is only half the battle.

Code has a lot of read-only global variables.

Declaring variables offloadable just means that their symbols are visible on the
MIC side.

Data isn’t necessarily also there.

Case Study: Modal2d Surveying the Code Making it Offloadable Xeon Phi Performance

Tracking Down the Offloadables (3/3)

Need to track down the required global variables, and do an #pragma

offload transfer when their values are set.

Allinea DDT offload debugger is useful for finding uninitialised variables
offload-side.

Now done :-).

Case Study: Modal2d Surveying the Code Making it Offloadable Xeon Phi Performance

Aside: Multi-dimensional Arrays

Main loop reads several multi-dimensional arrays.

These are implemented as arrays-of-pointers.

Offload data transfers in LEO won’t offload these properly.

Work-around: transfer them flat, then rebuild / reinterpret dimensions on the
’other-side’.

C one-liner to reinterpret flat array (basis flat) as 2-dimensional (basis):

doub l e (∗ r e s t r i c t b a s i s) [l s i z e p a d] = (doub l e (∗ r e s t r i c t) [
l s i z e p a d]) b a s i s f l a t ;

Case Study: Modal2d Surveying the Code Making it Offloadable Xeon Phi Performance

Xeon Phi Performance

After offloading added threads via OpenMP of nm loops.

This makes code OpenMP/MPI hybrid. Each MPI rank offloads to its own card
and uses all the cores.

With vectorisation enabled in main loop, test case:

2× SandyBridge = 167s (2.7× original).
1× Xeon Phi = 75s (6.0× original).
1× Xeon Phi = 2.23× 2× SandyBridge.

	Case Study: Modal2d
	Surveying the Code
	Making it Offloadable
	Xeon Phi Performance

