
Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

EPCC Training Day 1: Offload

James Briggs

1COSMOS DiRAC

April 29, 2015

Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Session Plan

1 Concepts

2 Offloading with Intel LEO

3 Data Movement in Intel LEO

4 Asynchronous Execution

5 Compiling and Running

Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Section 1

Concepts

Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Offloading – Accelerator Mode

A program runs on the host and
“offloads” work by specifying that
the Xeon Phi executes a block of
code.

The host also directs the
movement of data between the
host and the co-processor.

Similar data model to GPGPU.

App Running
on the Host

"Do this work with
this data and
deliver the results
as directed..."

Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Offload Models

Explicit

Programmer explicitly directs data movement and code execution.
This is achievable with Intel LEO, OpenMP 4.0, or with low level API.

Implicit Offload

Virtual shared memory provided by Cilk Plus.
Programmer marks some data as “shared” in the virtual sense.
Runtime automatically synchronizes values between host and co-processor.

Offload Enabled Library

Library manages offloading and data movement internally.
Examples: Intel MKL, MAGMA.

Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Section 2

Offloading with Intel LEO

Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Offload with Intel LEO

LEO - Language Extensions for Offload.

Add pragmas and new keywords to working code to make sections run on the
co-processor.

Heterogeneous compiler
⇒ generates code for both the processor and co-processor architecture.

Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Intel LEO – Offload Syntax

Designate a block of code to be ran on the coprocessor.

C/C++:

#pragma o f f l o a d t a r g e t (mic [: t a r g e t−number]) [, c l a u s e . . .]
{ . . . }

Fortran:

! d i r $ o f f l o a d t a r g e t (mic [: t a r g e t−number]) [, c l a u s e . . .]
. . .
! d i r $ end o f f l o a d

target-number allows you to specify which logical Phi number if there are
multiple.

Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Intel LEO – Offloading Functions

Declare that a function or global variable should be compiled for both host and
coprocessor using attribute keyword.

C/C++

a t t r i b u t e ((t a r g e t (mic))) i n t g s i z e ;

a t t r i b u t e ((t a r g e t (mic)))
doub l e myfunc (doub l e ∗ a , doub l e ∗ b)
{ . . . }

Fortran:

! d i r $ a t t r i b u t e s o f f l o a d : mic : : g s i z e
i n t e g e r : : g s i z e ;

! d i r $ a t t r i b u t e s o f f l o a d : mic : : my func
f u n c t i o n myfunc (a , b)

Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Intel LEO – Offloading Functions

C/C++ – entire blocks of code:

#pragma o f f l o a d a t t r i b u t e (push , t a r g e t (mic))
i n t g s i z e ;

doub l e myfunc (doub l e ∗ a , doub l e ∗ b)
{ . . . }
#pragma o f f l o a d a t t r i b u t e (pop)

Fortran – can only do variables:

! d i r $ o p t i o n s / o f f l o a d a t t r i b u t e t a r g e t=mic
i n t e g e r : : g s i z e
r e a l : : x
! d i r $ end op t i o n s

Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Section 3

Data Movement in Intel LEO

Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Data Movement

Memory on host and coprocessors are separate both physically and virtually.

With LEO programmer must copy in/out explicitly :

Programmer designates variables that need to be copied between host and card in
the offload pragma/directive.
Provide additional clauses to the offload pragma.

Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Data Movement Clauses

in(var1 [,...]):
Copy from host to coprocessor.

out(var1 [,...]):
Copy from coprocessor to host.

inout(var1 [,...](:
Copy from host to coprocessor and back to host at end.

nocopy(var1 [,...]):
Don’t copy selected variables.

Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Data Movement Example

doub l e a [1 00000] , b [1 00000] , c [1 00000] , d [1 0 0 0 0 0] ;
. . .
#pragma o f f l o a d t a r g e t (mic) \
i n (a) , out (c , d) , i n ou t (b)

#pragma omp p a r a l l e l f o r
f o r (i =0; i <100000; i++) {

c [i] = a [i] + b [i] ;
d [i] = a [i] − b [i] ;
b [i] = −b [i] ;

}

Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Dynamically Allocated Data

Dynamically allocated data needs also to be allocated and freed on the
coprocessor.

Add additional clauses to in/out/inout:

length(element-count-expr):
Copy N elements of the pointer’s type
alloc if (condition):
Allocate memory to hold data referenced by pointer if condition is TRUE.
free if (condition):
ree memory used by pointer if condition is TRUE

Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Example

i n t N = 5000000;

doub l e ∗a , ∗b ;
a = (doub l e ∗) mm malloc (N∗ s i z e o f (doub l e) ,64) ;
b = (doub l e ∗) mm malloc (N∗ s i z e o f (doub l e) ,64) ;
. . .
#pragma o f f l o a d t a r g e t (mic) \

i n (a : l e n g t h (N) a l l o c i f (1) f r e e i f (1)) , \
out (b : l e n g t h (N) a l l o c i f (1) f r e e i f (0))

#pragma omp p a r a l l e l f o r
f o r (i =0; i<N; i++) {

b [i] = 2 .0∗ a [i] ;
}

Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Example – Useful Macros

More convenient and readable to use the following macros:

#de f i n e a l l o c i f (1) ALLOC
#d e f i n e a l l o c i f (0) REUSE
#d e f i n e f r e e i f (1) FREE
#d e f i n e f r e e i f (0) RETAIN

Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Example – with Macros

i n t N = 5000000;

doub l e ∗a , ∗b ;
a = (doub l e ∗) mm malloc (N∗ s i z e o f (doub l e) ,64) ;
b = (doub l e ∗) mm malloc (N∗ s i z e o f (doub l e) ,64) ;
. . .
#pragma o f f l o a d t a r g e t (mic) \

i n (a : l e n g t h (N) ALLOC FREE) , \
out (b : l e n g t h (N) ALLOC RETAIN)

#pragma omp p a r a l l e l f o r
f o r (i =0; i<N; i++) {

b [i] = 2 .0∗ a [i] ;
}

Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Offload Transfer

Can also do a data-only offload, that only moves data and doesn’t execute code
on the coprocessor.

Syntax C/C++:

#pragma o f f l o a d t r a n s f e r t a r g e t (mic [: t a r g e t−number]) [, c l a u s e . . .]

Fortran:

! d i r $ o f f l o a d t r a n s f e r t a r g e t (mic [: t a r g e t−number]) [, c l a u s e . . .]

All the clauses from the offload pragma also apply to offload transfer.

Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Example

#pragma o f f l o a d t r a n s f e r t a r g e t (mic : 0) \
i n (a : l e n g t h (N) ALLOC RETAIN) , \
nocopy (b : l e n g t h (N) ALLOC RETAIN)

a – the space is allocated on Phi and data is copied over.

b – the space is allocated on Phi, but no data is transferred.

Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Offload Dynamic Data Life-cycle

3. #pragma offload inout(pA:length(n)) {...}

Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Section 4

Asynchronous Execution

Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Intel LEO – Offload Clauses

if(stmt)

Allow a test at execution time for whether or not the executable should try to
offload the statement. If true then execute on the coprocessor.

signal(tag)

If clause is included then the offload section occurs asynchronously. This allows
for concurrent host / coprocessor usage.

wait(tag)

Include it to specify a wait for completion of a previously initiated asynchronous
data transfer or asynchronous computation.

Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Intel LEO – Offload Clauses

There is also a wait-only pragma

C/C++ Syntax:

#pragma o f f l o a d w a i t t a r g e t (mic [: t a r g e t−number]) wa i t (s)

Fortran Syntax:

! d i r $ o f f l o a d w a i t t a r g e t (mic [: t a r g e t−number]) wa i t (s)

Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Intel LEO – Usage Models

There are at least three different usage models for offload:
1 Host offloads and waits for the coprocessor to finish the task.
2 Host offloads and works on a different task.
3 Host offloads and works on a part of the same task.

Possible within MPI tasks and with multiple coprocessors.

Reverse offloading (coprocessor −→ host) possible in theory, but not implemented.

Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Usage Model – Offload / Wait

Most common offload model.

Host execution waits until coprocessor has finished.

Task0 () ;
#pragma o f f l o a d t a r g e t (mic : 0)
{

Task1 (0 , N) ;
}
Task2 () ;
Task3 () ;

Courtesy: John Pennycook (Intel Corp.)

Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Usage Model – Concurrent

Common offload model.

Host intiates asynchronous offload of one task, and
then executes a different task simultaneously.

Task0 () ;
i n t s=0;
#pragma o f f l o a d t a r g e t (mic : 0) s i g n a l (s)
{

Task1 (0 , N) ;
}
Task2 () ;
#pragma o f f l o a d w a i t t a r g e t (mic : 0) wa i t (s)
Task3 () ; Courtesy: John Pennycook (Intel Corp.)

Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Usage Model – Worksharing

Least common offload model and hardest to do right.

Host and coprocessor work on different domains of the
same problem in parallel.

i n t s=0;
Task0 () ;
#pragma o f f l o a d t a r g e t (mic : 0) s i g n a l (s)
{

Task1 (0 ,3∗N/4) ;
}
Task1 (3∗N/4 ,N) ;
Task2 () ;
#pragma o f f l o a d w a i t t a r g e t (mic : 0) wa i t (s)
Task3 () ;

Courtesy: John Pennycook (Intel Corp.)

Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Section 5

Compiling and Running

Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Compiling and Running

Compiling:

To compile code that has offload sections no additional flags are needed by the Intel
compiler (MPSS install is required however).

Running:

Controlled via environment variables:

e xpo r t OFFLOAD DEVICES=0
expo r t MIC ENV PREFIX=MIC
expo r t MIC OMP NUM THREADS=236
expo r t MIC KMP AFFINITY=compact , g r a n u l a r i t y=f i n e

Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Compiling and Running

STDOUT/STDERR are piped back to the host STDOUT/STDERR so print
statements can be seen in offload code.

Remember to flush:

p r i n t f (” He l l o \n”) ;
f f l u s h (0) ;

Useful environment variables:

#i f d e f MIC // i f code i s comp i l ed f o r MIC
#i f d e f INTEL OFFLOAD // i f code i s o f f l o a d code

Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Summary

Intel LEO Main Pragmas:

#pragma o f f l o a d t a r g e t (mic)
#pragma o f f l o a d t r a n s f e r t a r g e t (mic)
#pragma o f f l o a d w a i t t a r g e t (mic)

Intel LEO Data Transfer Clauses:

i n / out / i n ou t /nocopy
a l l o c i f () , f r e e i f ()
l eng th , i n t o

Intel LEO Asynchronous Clauses:

s i g n a l (s) , wa i t (s)

	Concepts
	Offloading with Intel LEO
	Data Movement in Intel LEO
	Asynchronous Execution
	Compiling and Running

