
DiRAC/PATC/VI-HPS MPI Tools Workshop

EPCC/DiRAC/ECS MPI Tools Workshop
Introduction

Brian Wylie1 and Tobias Hilbrich2

1Research Center Jülich and
2Technische Universität Dresden

DiRAC/PATC/VI-HPS MPI Tools Workshop

Virtual Institute – High Productivity Supercomputing

Goal: Improve the quality and accelerate the development
process of complex simulation codes running on highly-parallel
computer systems

•  Start-up funding (2006–2011) by
Helmholtz Association of
German Research Centres

•  Activities
–  Development and integration of HPC programming tools

•  Correctness checking & performance analysis
–  Training workshops
–  Service

•  Support email lists
•  Application engagement

–  Academic workshops

http://www.vi-hps.org
2

DiRAC/PATC/VI-HPS MPI Tools Workshop

Course Overview

Thursday:
9:30am-11:00am Introduction, performance analysis

 basics, tools overview
11:30am-1:00pm Instrumentation and profiling hands-

 on
2:00pm-5:30pm Guided use with own code/examples
Friday:
09:30am-11:00am Automatic performance analysis w/

 Scalasca, correctness analysis w/
 MUST, other VI-HPS tools and Vampir
 live demo

11:30am-1:00pm Scalasca and MUST Hands-On
2:00pm-5:30pm Guided use with own code/examples

3

DiRAC/PATC/VI-HPS MPI Tools Workshop

 COSMO-SPECS a coupling of:
-  Weather forecast model
-  Detailed cloud microphysics scheme

 COSMO:
Approximation of
cloud droplet size

COSMO-SPECS:
Bin-wise discretization
of cloud droplet size

Developer observation:
Runtime per iteration increases over time, why?

Motivation Story 1

DiRAC/PATC/VI-HPS MPI Tools Workshop

Motivation Stories 2 and 3

“A hang only appeared when PF3D was scaled to half a
million processes.
The user refused to debug for 6 months …”

Dong Ahn, Computer scientist at Lawrence Livermore National Laboratory,
SC’13 BOF (Details in [1])

Dynamic load balancing
Benchmark
(Development Version):

Starting at 256 processes it crashes
within the MPI implementation

DiRAC/PATC/VI-HPS MPI Tools Workshop

  Tools assist you in your HPC development:

Performance optimization MUST: Correct MPI usage

Course Message

DiRAC/PATC/VI-HPS MPI Tools Workshop

Analysis:

•  TAU

•  Vampir

•  Scalasca

Measurement: Score-P

Partners:

 Community efforts to make tools more versatile

Behind the Performance Tools

DiRAC/PATC/VI-HPS MPI Tools Workshop

MUST
Developers:

Goal:
-  Scalable, Push-button,

no false positives

Umpire
Developers:

Issue:
- Scalability, local checks

Marmot
Developers:

Issue:
-  Lack of Non-local checks

 Merging runtime MPI correctness approaches

Behind the Correctness Tool MUST

DiRAC/PATC/VI-HPS MPI Tools Workshop

Next

•  Before we dive into the VI-HPS tools and their
use, we:
–  Provide basic terms used in performance analysis
–  Present our performance analysis workflows
–  Highlight common pitfalls

9

DiRAC/PATC/VI-HPS MPI Tools Workshop

EPCC/DiRAC/ECS MPI Tools Workshop
Parallel Performance Engineering

Brian Wylie1 and Tobias Hilbrich2

1Research Center Jülich and
2Technische Universität Dresden

(with content used with permission from tutorials

by Bernd Mohr/JSC and Luiz DeRose/Cray)

DiRAC/PATC/VI-HPS MPI Tools Workshop

Today: the “free lunch” is over

■  Moore's law is still in charge, but
■  Clock rates no longer increase
■  Performance gains only through

increased parallelism

■  Optimizations of applications more
difficult

■  Increasing application complexity
■  Multi-physics
■  Multi-scale

■  Increasing machine complexity
■  Hierarchical networks / memory
■  More CPUs / multi-core

✦ Every doubling of scale reveals a new bottleneck!

11

DiRAC/PATC/VI-HPS MPI Tools Workshop

Performance factors of parallel applications

■  “Sequential” factors
■  Computation

✦ Choose right algorithm, use optimizing compiler
■  Cache and memory

✦ Tough! Only limited tool support, hope compiler gets it right
■  Input / output

✦ Often not given enough attention

■  “Parallel” factors
■  Partitioning / decomposition
■  Communication (i.e., message passing)
■  Multithreading
■  Synchronization / locking

✦ More or less understood, good tool support

12

DiRAC/PATC/VI-HPS MPI Tools Workshop

Tuning basics

■  Successful engineering is a combination of
■  The right algorithms and libraries
■  Compiler flags and directives
■  Thinking !!!

■  Measurement is better than guessing
■  To determine performance bottlenecks
■  To compare alternatives
■  To validate tuning decisions and optimizations

✦ After each step!

13

DiRAC/PATC/VI-HPS MPI Tools Workshop

Performance engineering workflow

14

■  Prepare application (with symbols),
insert extra code (probes/hooks)

■  Collection of data relevant to
execution performance analysis

■  Calculation of metrics, identification
of performance metrics

■  Presentation of results in an intuitive/
understandable form

■  Modifications intended to eliminate/reduce
performance problems

Preparation

Measurement

Analysis

Examination

Optimization

DiRAC/PATC/VI-HPS MPI Tools Workshop

The 80/20 rule

■  Programs typically spend 80% of their time in 20% of
the code

■  Programmers typically spend 20% of their effort to get
80% of the total speedup possible for the application

✦ Know when to stop!

■  Don't optimize what does not matter

✦ Make the common case fast!

15

“If you optimize everything,
you will always be unhappy.”

Donald E. Knuth

DiRAC/PATC/VI-HPS MPI Tools Workshop

Classification of measurement techniques

■  How are performance measurements triggered?
■  Sampling
■  Code instrumentation

■  How is performance data recorded?

■  Profiling / Runtime summarization
■  Tracing

■  How is performance data analyzed?
■  Online
■  Post mortem

16

DiRAC/PATC/VI-HPS MPI Tools Workshop

Sampling

17

■  Running program is periodically interrupted
to take measurement

■  Timer interrupt, OS signal, or HWC overflow
■  Service routine examines return-address stack
■  Addresses are mapped to routines using

symbol table information

■  Statistical inference of program behavior
■  Not very detailed information on highly

volatile metrics
■  Requires long-running applications

■  Works with unmodified executables

Time

main foo(0) foo(1) foo(2)

int main()
{
 int i;

 for (i=0; i < 3; i++)
 foo(i);

 return 0;
}

void foo(int i)
{

 if (i > 0)
 foo(i – 1);

}

Measurement

t9 t7 t6 t5 t4 t1 t2 t3 t8

DiRAC/PATC/VI-HPS MPI Tools Workshop

Instrumentation

18

Time

Measurement

■  Measurement code is inserted such that
every event of interest is captured directly

■  Can be done in various ways

■  Advantage:
■  Much more detailed information

■  Disadvantage:
■  Processing of source-code / executable

necessary

■  Large relative overheads for small functions

int main()
{
 int i;

 for (i=0; i < 3; i++)
 foo(i);

 return 0;
}

void foo(int i)
{

 if (i > 0)
 foo(i – 1);

}

Time

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14

main foo(0) foo(1) foo(2)

Enter(“main”);

Leave(“main”);

Enter(“foo”);

Leave(“foo”);

DiRAC/PATC/VI-HPS MPI Tools Workshop

Instrumentation techniques

■  Static instrumentation
■  Program is instrumented prior to execution

■  Dynamic instrumentation
■  Program is instrumented at runtime

■  Code is inserted
■  Manually
■  Automatically

■  By a preprocessor / source-to-source translation tool
■  By a compiler
■  By linking against a pre-instrumented library / runtime system
■  By binary-rewrite / dynamic instrumentation tool

19

DiRAC/PATC/VI-HPS MPI Tools Workshop

Critical issues

■  Accuracy
■  Intrusion overhead

■  Measurement itself needs time and thus lowers performance
■  Perturbation

■  Measurement alters program behaviour
■  E.g., memory access pattern

■  Accuracy of timers & counters
■  Granularity

■  How many measurements?
■  How much information / processing during each measurement?

✦ Tradeoff: Accuracy vs. Expressiveness of data

20

DiRAC/PATC/VI-HPS MPI Tools Workshop

Profiling / Runtime summarization

■  Recording of aggregated information
■  Total, maximum, minimum, …

■  For measurements
■  Time
■  Counts

■  Function calls
■  Bytes transferred
■  Hardware counters

■  Over program and system entities
■  Functions, call sites, basic blocks, loops, …
■  Processes, threads

✦ Profile = summarization of events over execution interval

21

DiRAC/PATC/VI-HPS MPI Tools Workshop

Tracing

■  Recording information about significant points (events)
during execution of the program

■  Enter / leave of a region (function, loop, …)
■  Send / receive a message, …

■  Save information in event record
■  Timestamp, location, event type
■  Plus event-specific information (e.g., communicator,

sender / receiver, …)

■  Abstract execution model on level of defined events

✦ Event trace = Chronologically ordered sequence of
 event records

22

Event tracing

void foo() {

 ...

 send(B, tag, buf);
 ...

}

Process A

void bar() {

 ...
 recv(A, tag, buf);

 ...

}

Process B

MONITOR

MONITOR

sy
nc

hr
on

iz
e(

d)

void bar() {
 trc_enter("bar");
 ...
 recv(A, tag, buf);
 trc_recv(A);
 ...
 trc_exit("bar");
}

void foo() {
 trc_enter("foo");
 ...
 trc_send(B);
 send(B, tag, buf);
 ...
 trc_exit("foo");
}

instrument

Global trace view

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

merge

unify

1 foo

2 bar

...

58 ENTER 1

62 SEND B

64 EXIT 1

...

...

Local trace A

Local trace B

foo 1

...

bar 1

...

60 ENTER 1

68 RECV A

69 EXIT 1

...

...

DiRAC/PATC/VI-HPS MPI Tools Workshop

Tracing vs. Profiling

■  Tracing advantages
■  Event traces preserve the temporal and spatial relationships

among individual events (✦ context)
■  Allows reconstruction of dynamic application behaviour on any

required level of abstraction
■  Most general measurement technique

■  Profile data can be reconstructed from event traces

■  Disadvantages
■  Traces can very quickly become extremely large
■  Writing events to file at runtime causes perturbation
■  Writing tracing software is complicated

■  Event buffering, clock synchronization, ...

24

DiRAC/PATC/VI-HPS MPI Tools Workshop

Online analysis

■  Performance data is processed during measurement run
■  Process-local profile aggregation

■  More sophisticated inter-process analysis using

■  “Piggyback” messages

■  Hierarchical network of analysis agents

■  Inter-process analysis often involves application steering
to interrupt and re-configure the measurement

25

DiRAC/PATC/VI-HPS MPI Tools Workshop

Post-mortem analysis

■  Performance data is stored at end of measurement run

■  Data analysis is performed afterwards
■  Automatic search for bottlenecks

■  Visual trace analysis

■  Calculation of statistics

26

DiRAC/PATC/VI-HPS MPI Tools Workshop

No single solution is sufficient!

27

✦ A combination of different methods, tools and techniques is
typically needed!

■  Analysis
■  Statistics, visualization, automatic analysis, data mining, ...

■  Measurement
■  Sampling / instrumentation, profiling / tracing, ...

■  Instrumentation
■  Source code / binary, manual / automatic, ...

DiRAC/PATC/VI-HPS MPI Tools Workshop

Typical performance analysis procedure

■  Do I have a performance problem at all?
■  Time / speedup / scalability measurements

■  What is the key bottleneck (computation / communication)?
■  MPI / OpenMP / flat profiling

■  Where is the key bottleneck?
■  Call-path profiling, detailed basic block profiling

■  Why is it there?
■  Hardware counter analysis, trace selected parts to keep trace size

manageable

■  Does the code have scalability problems?
■  Load imbalance analysis, compare profiles at various sizes

function-by-function

28

DiRAC/PATC/VI-HPS MPI Tools Workshop

EPCC/DiRAC/ECS MPI Tools Workshop
VI-HPS Tools and Workshop Tools

Brian Wylie1 and Tobias Hilbrich2

1Research Center Jülich and
2Technische Universität Dresden

DiRAC/PATC/VI-HPS MPI Tools Workshop

Execution monitoring, checking & debugging

•  system/batchqueue monitoring (PTP/SysMon)
•  lightweight execution monitoring/screening (LWM2)
•  portable performance counter access (PAPI)
•  MPI library profiling (mpiP)
•  MPI execution outlier detection (AutomaDeD)
•  MPI memory usage checking (memchecker)
•  MPI correctness checking (MUST)
•  lightweight stack trace debugging (STAT)
•  task dependency debugging (Temanejo)

30

DiRAC/PATC/VI-HPS MPI Tools Workshop

Integrated appl. execution profile & trace analysis

•  instrumentation & measurement (Score-P, Extrae)
•  profile analysis examination (CUBE, ParaProf)
•  execution trace exploration ((Vampir), Paraver)
•  automated trace analysis (Scalasca)
•  on-line automated analysis (Periscope)

31

DiRAC/PATC/VI-HPS MPI Tools Workshop

Complementary tools & utilities

•  parallel performance frameworks (O|SS, TAU)
•  performance analysis data-mining (PerfExplorer)
•  parallel execution parametric studies (Dimemas)
•  cache usage analysis (kcachegrind)
•  assembly code optimization (MAQAO)
•  process mapping generation/optimization (Rubik)
•  parallel file I/O optimization (SIONlib)
•  uniform tool/utility installation/access (UNITE)

32

DiRAC/PATC/VI-HPS MPI Tools Workshop

Application execution monitoring,
checking & debugging

33

DiRAC/PATC/VI-HPS MPI Tools Workshop

Execution monitoring, checking & debugging

•  system/batchqueue monitoring (PTP/SysMon)
•  lightweight execution monitoring/screening (LWM2)
•  portable performance counter access (PAPI)
•  MPI library profiling (mpiP)
•  MPI execution outlier detection (AutomaDeD)
•  MPI memory usage checking (memchecker)
•  MPI correctness checking (MUST)
•  lightweight stack trace debugging (STAT)
•  task dependency debugging (Temanejo)

34

DiRAC/PATC/VI-HPS MPI Tools Workshop

•  MPI runtime error
detection tool

•  Open source (BSD license)
https://doc.itc.rwth-aachen.de/display/CCP/Project+MUST

•  Wide range of checks, strength areas:

- Overlaps in communication buffers

-  Errors with derived datatypes

-  Deadlocks

•  Largely distributed, can scale with the application
•  Developed by RWTH Aachen, TU Dresden, LLNL & LANL

MUST

DiRAC/PATC/VI-HPS MPI Tools Workshop

•  C code:

•  Tool Output:

...
MPI_Type_contiguous (2, MPI_INTEGER,
&newtype);
MPI_Send (buf, count, newtype, target,

tag, MPI_COMM_WORLD);
...

Use of uncommitted type

What? Where? Details Who?

MUST Correctness Reports

DiRAC/PATC/VI-HPS MPI Tools Workshop

Need for runtime error checking

•  Programming MPI is error-prone
•  Interfaces often define requirements for function

arguments
–  non-MPI Example: memcpy has undefined behaviour for

overlapping memory regions

•  MPI-2.2 Standard specification has 676 pages
–  Who remembers all requirements mentioned there?

•  For performance reasons MPI libraries run no checks

•  Runtime error checking pinpoints incorrect, inefficient &
unsafe function calls

37

DiRAC/PATC/VI-HPS MPI Tools Workshop

MUST features

•  Local checks:
-  Integer validation
-  Integrity checks (pointer validity, etc.)
-  Operation, Request, Communicator, Datatype & Group

object usage
-  Resource leak detection
-  Memory overlap checks

•  Non-local checks:
-  Collective verification
-  Lost message detection
-  Type matching (for P2P and collectives)
-  Deadlock detection (with root cause visualization)

38

DiRAC/PATC/VI-HPS MPI Tools Workshop

STAT

•  Stack trace analysis tool
–  highly scalable, lightweight debugging
–  merges stack traces from a parallel application’s processes

•  calling sequences of routines leading to current point of execution
–  groups similar processes at suspicious points of execution

•  automatically identifies equivalence classes and outliers
–  presents 2D spatial and 3D spatial-temporal call graphs

•  prefix tree with nodes labeled by routine names
•  edges labeled with the number and set of associated processes

•  Supports BlueGene, Cray & Linux clusters
–  Built on portable, open-source infrastructure

•  Developed by LLNL, UWM & UNM
–  Open source with BSD license
–  http://www.paradyn.org/STAT/STAT.html

39

DiRAC/PATC/VI-HPS MPI Tools Workshop

•  A hang only appeared only when pf3d is
scaled to half a million processes.

•  User refused to debug for 6 months…
•  Incorrect message mismatches due to non-

deterministic communication patterns.
•  Non-deterministic concurrency errors are

increasingly common and painful.
•  Demand for scalable—yet effective—

techniques and tools for this class of errors.

STAT Example

DiRAC/PATC/VI-HPS MPI Tools Workshop

Integrated application execution
profiling and trace analysis

DiRAC/PATC/VI-HPS MPI Tools Workshop

Integrated appl. execution profile & trace analysis

•  instrumentation & measurement (Score-P, Extrae)
•  profile analysis examination (CUBE, ParaProf)
•  execution trace exploration (Vampir, Paraver)
•  automated trace analysis (Scalasca)
•  on-line automated analysis (Periscope)

42

DiRAC/PATC/VI-HPS MPI Tools Workshop

Analysis:

•  TAU

•  Vampir

•  Scalasca

Measurement: Score-P

Partners:

 Community efforts to make tools more versatile

Behind the Performance Tools

DiRAC/PATC/VI-HPS MPI Tools Workshop

Vampir

•  Interactive event trace analysis
–  Alternative & supplement to automatic trace analysis
–  Visual presentation of dynamic runtime behaviour

•  event timeline chart for states & interactions of processes/threads
•  communication statistics, summaries & more

–  Interactive browsing, zooming, selecting
•  linked displays & statistics adapt to selected time interval (zoom)
•  scalable server runs in parallel to handle larger traces

•  Developed by TU Dresden ZIH
–  Open-source VampirTrace library bundled with OpenMPI 1.3
–  http://www.tu-dresden.de/zih/vampirtrace/
–  Vampir Server & GUI have a commercial license
–  http://www.vampir.eu/

44

DiRAC/PATC/VI-HPS MPI Tools Workshop

Vampir interactive trace analysis GUI

45

DiRAC/PATC/VI-HPS MPI Tools Workshop

Scalasca

•  Automatic performance analysis toolset
–  Scalable performance analysis of large-scale applications

•  particularly focused on MPI & OpenMP paradigms
•  analysis of communication & synchronization overheads

–  Automatic and manual instrumentation capabilities
–  Runtime summarization and/or event trace analyses
–  Automatic search of event traces for patterns of inefficiency

•  Scalable trace analysis based on parallel replay
–  Interactive exploration GUI and algebra utilities for XML callpath

profile analysis reports

•  Developed by JSC & GRS
–  Released as open-source
–  http://www.scalasca.org/

46

DiRAC/PATC/VI-HPS MPI Tools Workshop

Scalasca automatic trace analysis report

47

DiRAC/PATC/VI-HPS MPI Tools Workshop

Course Overview

Thursday:
9:30am-11:00am Introduction, performance analysis

 basics, tools overview
11:30am-1:00pm Instrumentation and profiling hands-

 on
2:00pm-5:30pm Guided use with own code/examples
Friday:
09:30am-11:00am Automatic performance analysis w/

 Scalasca, correctness analysis w/
 MUST, other VI-HPS tools and Vampir
 live demo

11:30am-1:00pm Scalasca and MUST Hands-On
2:00pm-5:30pm Guided use with own code/examples

48

