Virtual Institute — High Productivity Supercomputing

EPCC/DIRAC/ECS MPI Tools Workshop

Introduction

Brian Wylie' and Tobias Hilbrich?
"Research Center Julich and
2Technische Universitat Dresden

, ence Livermore al 1E[JNIVERSIT Yof
J JU“CH ationa 0 2! TENNESSEE 6r

Goal: Improve the quality and accelerate the development
process of complex simulation codes running on highly-parallel
computer systems

e Start-up funding (2006-2011) by ﬁ HELMHOLTZ

Helmholtz Association of
German Research Centres
* Activities
— Development and integration of HPC programming tools
» Correctness checking & performance analysis
— Training workshops
— Service
» Support email lists
» Application engagement
— Academic workshops

| ASSOCIATION

http://www.vi-hps.org

DiRAC/PATC/VI-HPS MPI Tools Workshop 2

Course Overview

Thursday:
9:30am-11:00am

11:30am-1:00pm

2:00p0m-5:30pm
Friday:

1-HPS

Introduction, performance analysis
basics, tools overview

Instrumentation and profiling hands-
on

Guided use with own code/examples

09:30am-11:00am Automatic performance analysis w/

11:30am-1:00pm
2:000m-5:30pm

DiRAC/PATC/VI-HPS MPI Tools Workshop

Scalasca, correctness analysis w/
MUST, other VI-HPS tools and Vampir
live demo

Scalasca and MUST Hands-On
Guided use with own code/examples

Motivation Story 1

COSMO-SPECS a coupling of:
- Weather forecast model
— Detailed cloud microphysics scheme

COSMO: Cloud droplets COSMO-SPECS:
Approximation of Bin-wise discretization

cloud droplet size of cloud droplet size

VAN /L

Developer observation:
Runtime per iteration increases over time, why?

- /

DiRAC/PATC/VI-HPS MPI Tools Workshop

Motivation Stories 2 and 3

(Y

“A hang only appeared when PF3D was scaled to half a
million processes.
The user refused to debug for 6 months ...”

. S

Dong Ahn, Computer scientist at Lawrence Livermore National Laboratory,
SC’13 BOF (Details in [1])

(- . /M I_"I\
Dynamic load balancing [EFT]
Benchmark S i i
(Development Version): oS | =i
Starting at 256 processes it crashes
within the MPI implementation

- y

DiRAC/PATC/VI-HPS MPI Tools Workshop

Course Message

Tools assist you in your HPC development:

Which performance
problem?

Eie Daplay Topology el
Own root percent

Netic ee

Where in the program?

Own roct percent

Calves | Flmvew

Where in the system?

Peer percent

System bee Topolagy 0

800

. Trace View -

0s 105

Erkeed

Timeline
205

&5 \Q@?

0s 40 50

m [HI\IEI% il MINHImInl

! i proceses, A«ummama Belusie Tim
2 1,000

3.251 1535 Sum
950.558's MPI

891.819s. WRF

876477 5 [OV

5124595 [IPHYS
27.4145 [0

L5405 VTP o

Context view

ENEEERED
EEEEOEOD
BEEREDOD
|EEog

DiRAC/PATC/VI-HPS MPI Tools Workshop

Performance optimization

[=F @ 7 Process nme»%‘
e -
— = J ?;Suw Pm(iss Wiinn
T W e S Tewae
= n : X
L L] u\uwuﬁmm Tl | cioncre ey g g
LTI

bt pipanan
S mam %a%augm a5
EEPETTTE
wmoAnHHE
pEnEm
§winnEEm
aialals LT
]H afate)i D] : T

0o
MUST Deadlock Details, date: Tue Mar 20 13:42:42 2012

MUST Outputfile

Back 1o MUST error report

The application issued a set of MPI calls that can cause a deadlock! The graphs below show details on this
situation. This includes a wait-for graph that shows active waiting dependencies in the deadlock situation and a
legend for this graph . The application still runs, if the deadlock manifested (e.g. caused a hang on this MPT
implementation) you can attach to the involved ranks with a debugger or abort the application (if necessary).

MPI_Send@0

N
tag:lZS\\
\

Sub Operation

A waits for B and C,

A _Va_ils_ferﬁ_or_c

=R)

MUST: Correct MPI usage

Behind the Performance Tools

I'J
B

Fro

Community efforts to make tools more versatile

~

Measurement: Score-P

) soucn RS

FORSCHUNGSZENTRUM

Partners:

TUTI

Technische Universitat Minchen

o

German Research School
for Simulation Sciences

UNIVERSITY OF OREGON

- J

DiRAC/PATC/VI-HPS MPI Tools Workshop

Analysis: A
 TAU
« Vampir
e Scalasca
scalasca (3
o /

Behind the Correctness Tool MUST

Merging runtime MPI correctness approaches

4) 4 .
Marmot Umpire
Developers: Developers:
Eﬁ?&"&?ﬁﬁ H LR I s i I Lawrence Livermore
DRESDEN LT National Laboratory
Issue: Issue:
L Lack of Non-local checks) L - Scalability, local checks
4 A
MUST
Developers:
RWTH (D) IRt
DRESDEN
B Lawrence Livermore
National Laboratory
Goal:
— Scalable, Push-button,
DIRACIPATCIVI-HPS MPI Tools Worksk_~ NO false positives Y,

-HPS

* Before we dive into the VI-HPS tools and their
use, we.
— Provide basic terms used in performance analysis
— Present our performance analysis workflows
— Highlight common pitfalls

DiRAC/PATC/VI-HPS MPI Tools Workshop 9

Virtual Institute — High Productivity Supercomputing

EPCC/DIRAC/ECS MPI Tools Workshop
Parallel Performance Engineering

Brian Wylie' and Tobias Hilbrich?
TResearch Center Jilich and
2Technische Universitat Dresden

(with content used with permission from tutorials
by Bernd Mohr/JSC and Luiz DeRose/Cray)

Barcelo ~ o

@ reeel o (=Y — uNIversiTE DE VA
Center [R h School z UNIVERSITAT ita -
R oty s s e ol VERSAILLES

SSSSS -QUENTIN-EN-YVELINES

' JX1s M Lawrence Livermore TECHNISCHE e NIVERSITYor
o JU“CH L2 Rabona Laboratory LR TENNESSEE br

Today: the “free lunch” is over

= Moore's law is still in charge, but | | — f
= Clock rates no longer increase 109 Moores Law »*”
= Performance gains only through

increased parallelism i

= Optimizations of applications more | = riceuw

difficult

= Increasing application complexity ’

= Multi-physics
= Multi-scale di /-

= Increasing machine complexity
= Hierarchical networks / memory
= More CPUs / multi-core

4+ Every doubling of scale reveals a new bottleneck!

1970 1980 1990 2000 2010

DIRAC/PATC/VI-HPS MPI Tools Workshop 11

Performance factors of parallel applications

= ‘Sequential” factors

= Computation
4 Choose right algorithm, use optimizing compiler

= Cache and memory
4+ Tough! Only limited tool support, hope compiler gets it right

= Input / output
4+ Often not given enough attention

= ‘Parallel” factors
= Partitioning / decomposition
= Communication (i.e., message passing)

= Multithreading

= Synchronization / locking
4 More or less understood, good tool support

DIRAC/PATC/VI-HPS MPI Tools Workshop 12

Tuning basics

= Successful engineering is a combination of
= The right algorithms and libraries
= Compiler flags and directives
= Thinking !!!
= Measurement is better than guessing
= [0 determine performance bottlenecks
= [0 compare alternatives

= [0 validate tuning decisions and optimizations
4+ After each step!

DIRAC/PATC/VI-HPS MPI Tools Workshop 13

Performance engineering workflow

v

Preparation

l

Measurement

l

Analysis

l

Examination

l

Optimization

DiRAC/PATC/VI-HPS MPI Tools Workshop

Prepare application (with symbols),
insert extra code (probes/hooks)

Collection of data relevant to
execution performance analysis

Calculation of metrics, identification
of performance metrics

Presentation of results in an intuitive/
understandable form

Modifications intended to eliminate/reduce
performance problems

14

FS

|
The 80/20 rule \A J_J

= Programs typically spend 80% of their time in 20% of
the code

= Programmers typically spend 20% of their effort to get
80% of the total speedup possible for the application

4+ Know when to stop!

= Don't optimize what does not matter
4 Make the common case fast!

"If you optimize everything,

you will always be unhappy.”

Donald E. Knuth

DIRAC/PATC/VI-HPS MPI Tools Workshop 15

Classification of measurement techniques

= How are performance measurements triggered?
= Sampling
= Code instrumentation

= How is performance data recorded?
= Profiling / Runtime summarization
= Tracing

= How is performance data analyzed?
= Online
= Post mortem

DIRAC/PATC/VI-HPS MPI Tools Workshop 16

foo(0) foo(1)

int main ()

{

int 1i;

for (1=0; 1 < 3; 1i++)
foo (i) ;

return 0O;

}

void foo(int 1)

{

if (1 > 0)
foo(1 - 1);

DiRAC/PATC/VI-HPS MPI Tools Workshop

= Running program is periodically interrupted
to take measurement

= Timer interrupt, OS signal, or HWC overflow
= Service routine examines return-address stack

= Addresses are mapped to routines using
symbol table information

= Statistical inference of program behavior

= Not very detailed information on highly
volatile metrics

= Requires long-running applications

s Works with unmodified executables

17

Instrumentation

— 4—©¢—|‘

foo(2)

Measurement

int main ()
{
int 1i;
Enter (“main”) ;
for (i=0; 1 < 3; i++)
foo (i),
Leave (“main”) ;
return 0;

}

void foo (int 1)
{
Enter (“foo”) ;
if (1 > 0)
foo(i - 1);
Leave (“fo0”) ;

}

DiRAC/PATC/VI-HPS MPI Tools Workshop

= Measurement code is inserted such that
every event of interest is captured directly

= Can be done in various ways

= Advantage:

= Much more detailed information

= Disadvantage:

= Processing of source-code / executable
necessary

= Large relative overheads for small functions

18

Instrumentation techniques

= Static instrumentation
= Program is instrumented prior to execution

= Dynamic instrumentation
= Program is instrumented at runtime

s Code is inserted
= Manually

= Automatically
= By a preprocessor / source-to-source translation tool
= By a compiler
= By linking against a pre-instrumented library / runtime system
= By binary-rewrite / dynamic instrumentation tool

DIRAC/PATC/VI-HPS MPI Tools Workshop 19

Critical issues

= Accuracy

= Intrusion overhead
= Measurement itself needs time and thus lowers performance

= Perturbation
= Measurement alters program behaviour
= E.g., memory access pattern

= Accuracy of timers & counters

= Granularity
= How many measurements?
= How much information / processing during each measurement?

4 Tradeoff: Accuracy vs. Expressiveness of data

DIRAC/PATC/VI-HPS MPI Tools Workshop 20

Profiling / Runtime summarization

= Recording of aggregated information
= Total, maximum, minimum, ...

s For measurements

= lime

= Counts
= Function calls
= Bytes transferred
= Hardware counters

= Over program and system entities

= Functions, call sites, basic blocks, loops, ...
s Processes, threads

4 Profile = summarization of events over execution interval

DIRAC/PATC/VI-HPS MPI Tools Workshop 21

Fro

g
: |
Tracm J... J"J

= Recording information about significant points (events)
during execution of the program
= Enter/leave of a region (function, loop, ...)
= Send /receive a message, ...

= Save information in event record
= Timestamp, location, event type

= Plus event-specific information (e.g., communicator,
sender / receiver, ...)

s Abstract execution model on level of defined events

4+ Event trace = Chronologically ordered sequence of
event records

DIRAC/PATC/VI-HPS MPI Tools Workshop 22

Event tracing

Process A

void foo() {
trc_enter("foo");

trc_send(B);
send(B, tag, buf);

trc_exit("foo");

}

MONITOR

instrument

Process B

void bar() {
trc_enter("bar");

recv(A, tag, buf);
trc_recv(A);

trc_exit("bar");

}

MONITOR

Local trace A

Global trace view
58 | ENTER
62 SEND 58| A | ENTER | 1
64| EXIT 60| B | ENTER | 2

62| A|SEND |B
1 | foo 64| A | EXIT 1

68| B| RECV | A
Local trace B 9] B [EXT 2
60 | ENTER Tmerge
68 | RECV *unify
69 | EXIT 1 | foo

2 | bar

1 | bar

Tracing vs. Profiling

= [racing advantages

= Event traces preserve the temporal and spatial relationships
among individual events (4 context)

= Allows reconstruction of dynamic application behaviour on any
required level of abstraction

= Most general measurement technique
s Profile data can be reconstructed from event traces

= Disadvantages
= [races can very quickly become extremely large

= Writing events to file at runtime causes perturbation

= Writing tracing software is complicated
= Event buffering, clock synchronization, ...

DiRAC/PATC/VI-HPS MPI Tools Workshop 24

Online analysis

= Performance data is processed during measurement run
= Process-local profile aggregation

= More sophisticated inter-process analysis using
= “Piggyback” messages

= Hierarchical network of analysis agents

= Inter-process analysis often involves application steering
to interrupt and re-configure the measurement

DIRAC/PATC/VI-HPS MPI Tools Workshop 25

4
Post-mortem analysis _.J'..J

Fro

s Performance data is stored at end of measurement run

= Data analysis is performed afterwards
= Automatic search for bottlenecks
= Visual trace analysis

= Calculation of statistics

DIRAC/PATC/VI-HPS MPI Tools Workshop 26

No single solution is sufficient!

4+ A combination of different methods, tools and techniques is
typically needed!
= Analysis
= Statistics, visualization, automatic analysis, data mining, ...

= Measurement
= Sampling / instrumentation, profiling / tracing, ...

= Instrumentation
= Source code / binary, manual / automatic, ...

DIRAC/PATC/VI-HPS MPI Tools Workshop 27

Typical performance analysis procedure

= Do | have a performance problem at all?
= Time / speedup / scalability measurements

= \What is the key bottleneck (computation / communication)?
= MPI/ OpenMP / flat profiling

= Where is the key bottleneck?
= Call-path profiling, detailed basic block profiling

= Why is it there?

= Hardware counter analysis, trace selected parts to keep trace size
manageable

= Does the code have scalability problems?

= Load imbalance analysis, compare profiles at various sizes
function-by-function

DIRAC/PATC/VI-HPS MPI Tools Workshop 28

Virtual Institute — High Productivity Supercomputing

EPCC/DIRAC/ECS MPI Tools Workshop
VI-HPS Tools and Workshop Tools

Brian Wylie' and Tobias Hilbrich?
"Research Center Julich and
2Technische Universitat Dresden

. uNiversiTE DE VA
Center German Research School TEcwuscnE, UNIVERSITAT i ita
Contro w s iy M

' J31% ence Livermore e UNIVERSITYor
o JU“CH ationa 0 ! TENNESSEE br

« system/batchqueue monitoring (PTP/SysMon)

* lightweight execution monitoring/screening (LWM2)
« portable performance counter access (PAPI)

« MPI library profiling (mpiP)

« MPI execution outlier detection (AutomaDeD)
 MPI memory usage checking (memchecker)

* MPI correctness checking (MUST)

 lightweight stack trace debugging (STAT)

« task dependency debugging (Temanejo)

DIRAC/PATC/VI-HPS MPI Tools Workshop 30

 instrumentation & measurement (Score-P, Extrae)
 profile analysis examination (CUBE, ParaProf)

« execution trace exploration ((Vampir), Paraver)

« automated trace analysis (Scalasca)

« on-line automated analysis (Periscope)

DIRAC/PATC/VI-HPS MPI Tools Workshop 31

Complementary tools & utilities

 parallel performance frameworks (O|SS, TAU)

« performance analysis data-mining (PerfExplorer)
« parallel execution parametric studies (Dimemas)
« cache usage analysis (kcachegrind)

« assembly code optimization (MAQAO)

« process mapping generation/optimization (Rubik)
 parallel file /0 optimization (SIONIib)

 uniform tool/utility installation/access (UNITE)

DIRAC/PATC/VI-HPS MPI Tools Workshop 32

Virtual Institute — High Productivity Supercomputing

Application execution monitoring,
checking & debugging

Barcelona . s

C s (=3 — TECHNISCHE uNiversiTE DE VA
Cei G R h School s A ita - »
S o et e i MONCHEN oraioy Snicom Vil LIS - o

SSSSS -QUENTIN-EN-YVELINES

i M Lawrence Livermore TECHNISCHE e UNIVERSITYor
J !U LIC';', LA National Laboratory S e TENNESSEE Wr

Execution monitoring, checking & debugging J—J_F)Sj

« system/batchqueue monitoring (PTP/SysMon)

* lightweight execution monitoring/screening (LWM2)
« portable performance counter access (PAPI)

* MPI library profiling (mpiP)

« MPI execution outlier detection (AutomaDeD)
 MPI memory usage checking (memchecker)

* MPI correctness checking (MUST)

* lightweight stack trace debugging (STAT)

« task dependency debugging (Temanejo)

DiRAC/PATC/VI-HPS MPI Tools Workshop 34

Fro

« Open source (BSD license)

https://doc.itc.rwth-aachen.de/display/CCP/Project+MUST
« Wide range of checks, strength areas:

 MPI runtime error
detection tool

Overlaps in communication buffers
Errors with derived datatypes

Deadlocks
« Largely distributed, can scale with the application
* Developed by RWTH Aachen, TU Dresden, LLNL & LANL

DiRAC/PATC/VI-HPS MPI Tools Workshop

MUST Correctness Reports

e (C code:

MPI Type contiguous (2, MPI INTEGER,

&newtype) ;

MPI Send (buf, count, newtype, target,
tag, MPI COMM WORLD)

LUse of uncommitted type }

e Tool Output:

= N MUST Outputf”
Who? H What? J14:11 2014. Where? Details }

Rai T Viewuge Jerdn— TReferences |

call MPI_Type_commit before using the type for MPI_Send
|
|

. . Representative [References of a }
Argument 3 (datatype) is not commited for transfer, location: [representative process:
transfer!
. (1st jreference 1 rank 0:
0 |Error] (Information on datatypeDatatype created at reference occurrence) [MPI_Type_contiguous|

1 is for Fortran, based on the following type(s): { called from:
MPI_INTEGER }Typemap = {(MPI_INTEGER, 0), 40 '
(MPI_INTEGER, 4)})

(1st occurrence) called
m:
main@test.c:14

in@test.c:17

Need for runtime error checking

* Programming MPI is error-prone

 Interfaces often define requirements for function
arguments

— non-MPI| Example: memcpy has undefined behaviour for
overlapping memory regions

« MPI-2.2 Standard specification has 676 pages

— Who remembers all requirements mentioned there?
* For performance reasons MPI libraries run no checks

* Runtime error checking pinpoints incorrect, inefficient &
unsafe function calls

DIRAC/PATC/VI-HPS MPI Tools Workshop 37

MUST features

* Local checks:
— Integer validation
— Integrity checks (pointer validity, etc.)

— Operation, Request, Communicator, Datatype & Group
object usage

— Resource leak detection
— Memory overlap checks

* Non-local checks:
— Collective verification
— Lost message detection
— Type matching (for P2P and collectives)
— Deadlock detection (with root cause visualization)

DIRAC/PATC/VI-HPS MPI Tools Workshop 38

« Stack trace analysis tool
— highly scalable, lightweight debugging

— merges stack traces from a parallel application’ s processes
« calling sequences of routines leading to current point of execution

— groups similar processes at suspicious points of execution
« automatically identifies equivalence classes and outliers

— presents 2D spatial and 3D spatial-temporal call graphs
» prefix tree with nodes labeled by routine names
» edges labeled with the number and set of associated processes

« Supports BlueGene, Cray & Linux clusters
— Built on portable, open-source infrastructure

« Developed by LLNL, UWM & UNM

— Open source with BSD license Analysis
— http://www.paradyn.org/STAT/STAT.html Tool

DIRAC/PATC/VI-HPS MPI Tools Workshop 39

STAT Example

524287: [1-524287]\ 1:[0]

« A hang only appeared only when pf3d is
scaled to half a million processes.

I524287: [1-524287]

[] « User refused to debug for 6 months...
* Incorrect message mismatches due to non-

oo | deterministic communication patterns.

ooyt * Non-deterministic concurrency errors are
increasingly common and painful.
« Demand for scalable—yet effective—
[techniques and tools for this class of errors.

DiRAC/PATC/VI-HPS MPI Tools Workshop

Virtual Institute — High Productivity Supercomputing

Integrated application execution
profiling and trace analysis

Barcelona . s

C s (=3 — TECHNISCHE uNiversiTE DE VA
Cei G R h School s A ita - »
S o et e i MONCHEN oraioy Snicom Vil LIS - o

SSSSS -QUENTIN-EN-YVELINES

i M Lawrence Livermore TECHNISCHE e UNIVERSITYor
J !U LIC';', LA National Laboratory S e TENNESSEE Wr

 instrumentation & measurement (Score-P, Exirae)
 profile analysis examination (CUBE, ParaProf)

« execution trace exploration (Vampir, Paraver)

« automated trace analysis (Scalasca)

* on-line automated analysis (Periscope)

DIRAC/PATC/VI-HPS MPI Tools Workshop 42

Behind the Performance Tools

I'J
B

Fro

Community efforts to make tools more versatile

~

Measurement: Score-P

) soucn RS

FORSCHUNGSZENTRUM

Partners:

TUTI

Technische Universitat Minchen

o

German Research School
for Simulation Sciences

UNIVERSITY OF OREGON

- J

DiRAC/PATC/VI-HPS MPI Tools Workshop

Analysis: A
 TAU
« Vampir
e Scalasca
scalasca (3
o /

 Interactive event trace analysis
— Alternative & supplement to automatic trace analysis

— Visual presentation of dynamic runtime behaviour
» event timeline chart for states & interactions of processes/threads
¢ communication statistics, summaries & more

— Interactive browsing, zooming, selecting

* linked displays & statistics adapt to selected time interval (zoom)
« scalable server runs in parallel to handle larger traces

 Developed by TU Dresden ZIH

— Open-source VampirTrace library bundled with OpenMPI 1.3

— http://www.tu-dresden.de/zih/vampirtrace/

— Vampir Server & GUI have a commercial license
— http://www.vampir.eu/ ; :

VAMPIR

DiRAC/PATC/VI-HPS MPI Tools Workshop 44

Vampir interactive trace analysis GUI

[Trace View - /fhome/dolescha/tracefiles/feature-traces/wrf-p64-io-mem-rusage/wrf. 11
W File View Help -8 x
View Chart Filter

= 1, e N = ~)
ERNLOTIERS B¢ o~ | W NN R IRORI NAI T
Timeline Function Summary
All Processes, Accumulated Exclusive Time p...
Os Ss 10 s 15 s 20 s 25 s 30 s 35s 40 s 500 s Os
; : : : : : : : 939.281737 s 1=
Process 8
Process 25
Process 42
Process 59
Process 0 : ~]
! =}
2 Communication Matrix View
3 Number of Messages
4 :
6 I Vlllllllrlllll Lt H L,

50 M
_0|M : : : : : : :]
Function Legend Process Summary Context View
:Application o ® Function Summary [£J] -+
Bl o
W o Property |Va|ue
Mo Display Function Summary
M mEM Function Group MPI (6)
™ wpi Accumulated Exclusive Time 748.945947 s (29.198329%)
[™] PHYS
B vT APl
M \RF =

DiRAT/PATCIVI-APS NPT T00IS VWOrKSNop 45

« Automatic performance analysis toolset

— Scalable performance analysis of large-scale applications
 particularly focused on MPIl & OpenMP paradigms
 analysis of communication & synchronization overheads

— Automatic and manual instrumentation capabilities
— Runtime summarization and/or event trace analyses

— Automatic search of event traces for patterns of inefficiency
» Scalable trace analysis based on parallel replay

— Interactive exploration GUI and algebra utilities for XML callpath
profile analysis reports

* Developed by JSC & GRS

— Released as open-source
— http://www.scalasca.org/

scalasca (9

DIRAC/PATC/VI-HPS MPI Tools Workshop 46

Scalasca automatic trace analysis report

. Cube 3.3 QT: epik_pflotran_vn16384_trace/stepperrun.cube.gz <@jugene3>

FEile gisplay Iﬂp0|0gy ﬂelp

| Absolute v | Absolute v |Peer percent v
Metric tree ' Calltree | Flat view | WWIWW
& [0.000 Time l«] | &0 0.000 stepperrun -] (+]

& @ 8580857.895 Execution & [632.851 stepperstepflowdt (100,000%)
& [5230.607 MPI & [J 0.000 snessolve
& [J 0.000 Synchronization & [J 0.000 SNESSolve {0.000%)
& [41.051 Collective & [44.834 SNESSolve_LS (100.000%)
[7386.443 wait at Barrier [d 15578.633 vecNormEnd
[10.078 Barrier Completion [20612.094 SNESComputejacobian
&[] 0.000 Remote Memory Acces [388606.174 SNES_KSPSolve
& [0 0.000 Communication [d28576.416 SNESLineSearchNo
& [573163.978 Point-to-point e [559.785 steppersteptransportdt (100.000%)
[d 18178.028 Late Sender & [0.000 snessolve
[0.000 Late Receiver & [0.000 SNESSolve (0.000%)
& [90216.650 Collective & [0 579.190 SNESSolve_LS (100.000%)
[0.000 Early Reduce [50795.340 VecNormEnd
[0 0.000 Early Scan =+ [] 0.000 SNESComputelacobian (0.000%)
[0.000 Late Broadcast & [J 0.000 oursnesjacobian
[11256616.428 Wait at N x N & [0.000 rtjacobian (0.000%)
[47576.334 N x N Completi & [213.507 rjacobianpatch2 (100.000%)
& [J 0.000 Remote Memory Acces = [J 0.000 matassemblybegin
& [J 0.000 File 170 & [0.000 MatAssemblyBegin
L [0.000 Init/Exit & [d 244 576 MatAssemblyBegin_MPIBAI
L [J 0.000 Overhead L [263313.566 MPI_Allreduce
- 1.641e10 Visits [7279.933 matzerorowslocal
& [l 9584640 Synchronizations & [J 0.000 SNES_KSPSolve
& O 0 Communications & [J 0.000 KSPSolve (0.000%)
[E 3.201e9 Point-to-point &[] 0.000 VecSet
[8.582e8 Collective L[166766.572 MPI_Allreduce
[0 Remote Memory Access [75544.625 KSPSolve_BCGS
& O 0 Bytes transferred & [0.000 SNESLineSearchMo (0.000%)
[9.463e12 Point-to-point & [0.000 VecNorm
[l 1.662e16 Collective i & [0.000 VecNorm_MPI
[0 Remote Memory Access (<] L [0 237268.334 MPI_Allreduce (<]

& [0 MPI file operations [~] [~] 2
al | () & | I3 | TN |)
0.000 1.257eB (11.875%) 1.058e7| [0.000 6.673e5 (53.107%) 1.257e6| [0.000 100.000 100.000

0.803 40.73 - 51.991 365.182

—J

Course Overview

Thursday:
9:30am-11:00am

11:30am-1:00pm

2:00p0m-5:30pm
Friday:

1-HPS

Introduction, performance analysis
basics, tools overview

Instrumentation and profiling hands-
on

Guided use with own code/examples

09:30am-11:00am Automatic performance analysis w/

11:30am-1:00pm
2:000m-5:30pm

DiRAC/PATC/VI-HPS MPI Tools Workshop

Scalasca, correctness analysis w/
MUST, other VI-HPS tools and Vampir
live demo

Scalasca and MUST Hands-On
Guided use with own code/examples

48

