
PARALLELISATION &
SCALING OF NAMD
Iain Bethune (ibethune@epcc.ed.ac.uk)

with thanks to David Henty and Toni Collis

Outline
• Parallel Programming Models

•  Distributed Memory
•  Shared Memory

• Parallel Decomposition Strategies for Molecular Dynamics

• Parallelisation in NAMD
•  Dynamic Load Balancing

• Measuring performance

Parallel Programming Models
• Why do we need parallelism at all?

• Parallel programming is (even) harder than sequential
programming

• Single processors are reaching limitations
•  Clock rate stalled at ~2.5 GHz (due to heat)
•  Full benefits of vectorisation (SIMD) can be hard to realise
•  Chip vendors focused on low-power (for mobile devices)

Parallel Programming Models
• But we need more speed!

•  Solve problems faster (strong scaling)
•  Solve bigger problems in same time (weak scaling)
•  Tackle new science that emerges at long runtimes / large system size

• Need strategies to split up our computation between
different processors

•  Ideally our program should run P times faster on P
processors - but not in practice!
•  Some parts may be inherently serial (Amdahl’s Law)
•  Parallelisation may introduce overheads e.g. communication

Parallel Programming Models
“The performance improvement to be gained by parallelisation is limited
by the proportion of the code which is serial”

Gene Amdahl, 1967

Parallel Programming Models
• Almost all modern CPUs are multi-core

•  2,4,6… CPU cores, sharing access to a common memory

•  This is Shared Memory Parallelism
•  Several processors executing the same program
•  Sharing the same address space i.e. the same variables
•  Each processor runs a single ‘thread’
•  Threads communicate by reading/writing to shared data

• Example programming models include:
•  OpenMP, POSIX threads (pthreads)

Analogy
• One very large whiteboard in a two-person office

•  the shared memory

•  Two people working on the same problem
•  the threads running on different cores attached to the memory

• How do they collaborate?
•  working together
•  but not interfering

• Also need private data

my
data

shared
data

my
data

Hardware

Memory

Processor

Shared Bus

Processor Processor Processor Processor

• Needs support of a shared-memory architecture

Parallel Programming Models
• Most supercomputers are build from 1000s of nodes

•  Each node consists of some CPUs and memory
•  Connected together via a network

•  This is Distributed Memory Parallelism
•  Several processors executing (usually) the same program
•  Each processor has it’s own address space
•  Each processor runs a single ‘process’
•  Threads communicate by passing messages

• Example programming models include:
•  MPI, SHMEM

Analogy
•  Two whiteboards in different single-person offices

•  the distributed memory

•  Two people working on the same problem
•  the processes on different nodes attached to the interconnect

• How do they collaborate?
•  to work on single problem

• Explicit communication
•  e.g. by telephone
•  no shared data

my
data

my
data

Hardware

• Natural map to
distributed-memory
•  one process per

processor-core
•  messages go over

the interconnect,
between nodes/OS’s

Processor

Processor

Processor

Processor

Processor
Processor

Processor
Processor

Interconnect

Parallel Programming Models
• Some codes support both OpenMP and MPI

•  Use OpenMP for desktop PCs with multi-cores or
•  MPI for supercomputers
•  Maybe also support for Accelerators (GPUs)

• May also combine MPI and OpenMP
•  Called hybrid or mixed-mode parallelism
•  Use shared memory within a node (with several processors)
•  Use message passing between nodes
•  Usually only useful for scaling to 10,000s of cores!

Parallel Decompositions for MD
• Given P processes, how to we split up the work?

• Goals:
•  Achieve good load balance

•  Each processor takes an equal share of the work / time
•  Poor load balance limits scaling (similar to Amdahl’s Law)

•  Reduce communication
•  Especially global communication e.g. Broadcast, gather

•  Asynchronous communication
•  If possible, do communication while other work is going on

Parallel MD - Task farm
Setup

Forces

Motion

Stats.

Results

Setup

Forces

Motion

Stats.

Results

Setup

Forces

Motion

Stats.

Results

Setup

Forces

Motion

Stats.

Results

Proc 0 Proc 3 Proc 2 Proc 1

Parallel MD - Task farm
• Advantages:

•  Simple to implement – no communications
•  Excellent load balance (assuming all systems are the same size)
•  ‘Embarassingly parallel’ – perfect scaling

• Disadvantages:
•  Only for replica / multiple walker sampling
•  Cannot reduce runtime per MD step – limit to short MD timescales

Parallel MD – Replicated Data
Initialize

Forces

Motion

Statistics

Summary

Initialize

Forces

Motion

Statistics

Summary

Initialize

Forces

Motion

Statistics

Summary

Initialize

Forces

Motion

Statistics

Summary

Proc 0 Proc 1 Proc 2 Proc N-1

Parallel MD – Replicated Data
• Advantages:

•  Relatively simple to implement
•  Possible to achieve good load balance

•  Can decompose over particles, terms in the force field …
•  Works well with complex force-fields

• Disadvantages:
•  Global communication overhead
•  Leads to limited scalability
•  Requires large amount of memory in total

•  Every process stores all the particles

Parallel MD - Domain decomposition

A B

C D

–  Short	 range	 poten-al	 cut	 off	 	
(rcut	 <<	 Lcell)	

–  Spa-al	 decomposi-on	 of	 atoms	
into	 domains	

–  Map	 domains	 onto	 processors	 	
–  Use	 link	 cells	 in	 each	 domain	
–  Pass	 border	 link	 cells	 to	 adjacent	

processors	
–  Calculate	 forces,	 solve	 equa-ons	

of	 mo-on	
–  Re-‐allocate	 atoms	 leaving	

domains	

2D	 Example	

Parallel MD – Domain Decomposition
• Advantages:

•  Communication is mainly local (between neighbouring processes)
•  Possible to achieve good load balance

•  If system is isotropic
•  Memory is distributed over all processes

•  Allows large scaling
•  Enables bigger systems than can be handled by a single CPU

(millions of atoms)

• Disadvantages:
•  Larger cut-offs lead to more communication
•  Implementation is more complex

Parallelisation in NAMD
• Modified version of domain decomposition

• Split up space into ‘patches’
•  nPatches >> nCPUs

•  Initial static load balance
•  Assign patches to CPUs so each has roughly same number of

atoms
•  Keep neighbouring patches on nearby CPUs (minimise

communication

Parallelisation in NAMD
• Workload is modelled as follows:

•  Local force computation ~ Nap
2

•  All pairs of local atoms
•  Force computations between neighbouring patches ~ w * Naa * Nab

•  Weighting w depends on if patches share a corner, edge or face
•  Forces between patches are assigned to ‘compute objects’

•  May be migrated freely between processors later

•  Then at runtime, use dynamic load balancing to optimise
the domain decomposition
•  Accounts for costs not covered by the model
•  Cope with changing system geometry during MD

Parallelisation in NAMD
• Workload metrics are recorded as follows:

•  Background load (non migratable work)
•  Idle time
•  Migratable compute objects and their associated compute load
•  The patches that compute objects depend upon
•  The home processor of each patch
•  The proxy patches required by each processor

•  Load balancing heuristic
•  Move most expensive migratable object (compute objects) to least

loaded processor, taking into account possible communication
increases

•  Details in Kalé et al, LNCS 1457, 1998

Parallelisation in NAMD

Measuring Performance
• Basic measure – wallclock time

•  How long did my calculation take from start to finish?
•  Depends on the number of processors!
•  Lower is better

• Application-specific measures
•  For MD, simulation time per wallclock time
•  e.g. ns / day
•  Using how many processors?
•  Higher is better

Measuring Performance
• Speed up

•  typically S(N,P) < P

• Parallel efficiency

•  typically E(N,P) < 1

Where N is the size of the problem and P the number of processors

• Usually, consider E > 70% to be ‘good’ scaling

Measuring Performance
• How to choose the number of CPUs for your simulation

• Rely on relevant benchmark data
•  How many atoms, what force-field (cut-off, PME) ?

•  Some examples provided at
http://www.ks.uiuc.edu/Research/namd/performance.html

• No substitute for testing with your own system

Measuring Performance
•  Important factors for a benchmark calculation

• Use ‘production settings’
•  I/O turned on, chosen forcefield settings
•  Benchmark should closely reflect performance of real simulation

• Reduce the number of MD steps
•  Long enough to ignore the effects of startup overheads

•  In NAMD after a few 100 steps the dynamic load balancer starts working
•  Short enough to not waste CPU time

•  Aim for a few minutes

Summary
• Modern HPC systems support both shared and distributed

memory parallelism
•  Codes have adapted to exploit this

• Many ways to parallelise MD
•  All are a compromise between complexity and performance
•  ‘Best’ method depends on the system e.g. in vacuo, solvated, solid

state

• Always run scaling tests before spending large amounts
of CPU time for long MD runs

