
David Henty

 EPCC

d.henty@epcc.ed.ac.uk

+44 131 650 5960

Message-Passing

Thought Exercise
Traffic Modelling

15 May 2015 Traffic Modelling 2

traffic flow

• we want to predict traffic flow

– to look for effects such as congestion

• build a computer model

http://www.epcc.ed.ac.uk/

15 May 2015 Traffic Modelling 3

simple traffic model

• divide road into a series of cells

– either occupied or unoccupied

• perform a number of steps

– each step, cars move forward if space ahead is empty

could do this by moving

pawns on a chess board

http://www.epcc.ed.ac.uk/

15 May 2015 Traffic Modelling 4

traffic behaviour

• model predicts a number of interesting features

• traffic lights

• congestion

0.0

0.5

1.0

density of

cars

average

speed

0% 50% 100%

• more complicated models

are used in practice

http://www.epcc.ed.ac.uk/

15 May 2015 Traffic Modelling 5

how fast can we run the model?

• measure speed in Car Operations Per second

– how many COPs?

• around 2 COPs

• but what about three people?

– can they do six COPs?

http://www.epcc.ed.ac.uk/

15 May 2015 Traffic Modelling 6

A

C

B

a parallel traffic model

S

http://www.epcc.ed.ac.uk/

7 HPC Concepts

State Table

• If Rt(i) = 0, then Rt+1(i) is given by:

– Rt(i-1) = 0 Rt(i -1) = 1

– Rt(i+1) = 0 0 1

– Rt(i+1) = 1 0 1

• If Rt(i) = 1, then Rt+1(i) is given by:

– Rt(i-1) = 0 Rt(i -1) = 1

– Rt(i+1) = 0 0 0

– Rt(i+1) = 1 1 1

http://www.epcc.ed.ac.uk/

8 HPC Concepts

Pseudo Code (serial)

 declare arrays old(i) and new(i), i = 0,1,...,N,N+1

 initialise old(i) for i = 1,2,...,N-1,N (eg randomly)

 loop over iterations

 set old(0) = old(N) and set old(N+1) = old(1)

 loop over i = 1,...,N

 if old(i) = 1

 if old(i+1) = 1 then new(i) = 1 else new(i) = 0

 if old(i) = 0

 if old(i-1) = 1 then new(i) = 1 else new(i) = 0

 end loop over i

 set old(i) = new(i) for i = 1,2,...,N-1,N

 end loop over iterations

http://www.epcc.ed.ac.uk/

9 HPC Concepts

Pseudo Code (serial with subroutines)

 declare arrays old(i) and new(i), i = 0,1,...,N,N+1

 initialise old(i) for i = 1,2,...,N-1,N (eg randomly)

 loop over iterations

! Implement boundary conditions

 set old(0) = old(N) and set old(N+1) = old(1)

! Update road

 call newroad(new, old, N)

! Prepare for next iteration

 set old(i) = new(i) for i = 1,2,...,N-1,N

 end loop over iterations

http://www.epcc.ed.ac.uk/

10 HPC Concepts

Pseudo Code (distributed memory)

! assume we are running on P processes

 declare arrays old(i) and new(i), i = 0,1,...,N/P,N/P+1

 initialise old(i) for i = 1,2,...,N/P-1,N/P (eg randomly)

 loop over iterations

! Implement boundary conditions (processes arranged as a ring)

 set old(0) on this process to old(N/P) from previous process

 set old(N/P+1) on this process to old(1) from next process

! Update road

 call newroad(new, old, N/P)

! Prepare for next iteration

 set old(i) = new(i) for i = 1,2,...,N/P-1,N/P

 end loop over iterations

http://www.epcc.ed.ac.uk/

Halo swapping

! Implement boundary conditions

 set old(0) on this process to old(N/P) from previous process

 set old(N/P+1) on this process to old(1) from next process

• Implement this using blocking receives (e.g. MPI_Recv) and:

– synchronous send (routine blocks until message is received)

– e.g. MPI_Ssend

• or

– asynchronous send (message copied into buffer, returns straight away)

– e.g. MPI_Bsend

• or

– non-blocking synchronous send (no buffering but immediate return)

– e.g. MPI_Issend / MPI_Wait

 15 May 2015 Traffic Modelling 11

http://www.epcc.ed.ac.uk/

Synchronous sends

! Implement boundary conditions

 Ssend(old(N/P), up)

 Recv (old(1), down)

 Ssend(old(1), down)

 Recv (old(N/P+1), up)

• Guaranteed to deadlock

15 May 2015 Traffic Modelling 12

http://www.epcc.ed.ac.uk/

Asynchronous (buffered) sends

! Implement boundary conditions

 Bsend(old(N/P), up)

 Recv (old(1), down)

 Bsend(old(1), down)

 Recv (old(N/P+1), up)

• Where do synchronisation issues become important?

 call newroad(new, old, N/P) ?

– OK because we are writing new but only reading old

– set old(i) = new(i) ?

– only OK because Bsend has copied old(1) and old(N/P)

• We don’t really care if/when the message is received

– we do really care if/when we can safely reuse the local send buffers

15 May 2015 Traffic Modelling 13

http://www.epcc.ed.ac.uk/

Non-blocking (immediate) sends

! Implement boundary conditions

 Issend(old(N/P), up)

 Recv (old(1), down)

 Issend(old(1), down)

 Recv (old(N/P+1), up)

 call newroad(new, old, N/P)

 set old(i) = new(i) for i = 1,2,...,N/P-1,N/P)

15 May 2015 Traffic Modelling 14

http://www.epcc.ed.ac.uk/

Non-blocking (immediate) sends

! Implement boundary conditions

 Issend(old(N/P), up)

 Recv (old(1), down)

 Issend(old(1), down)

 Recv (old(N/P+1), up)

 call newroad(new, old, N/P)

 set old(i) = new(i) for i = 1,2,...,N/P-1,N/P)

! Wait for communications to complete before next iteration

 wait(up)

 wait(down)

15 May 2015 Traffic Modelling 15

http://www.epcc.ed.ac.uk/

Non-blocking (immediate) sends

! Implement boundary conditions

 Issend(old(N/P), up)

 Recv (old(1), down)

 Issend(old(1), down)

 Recv (old(N/P+1), up)

 call newroad(new, old, N/P)

 set old(i) = new(i) for i = 1,2,...,N/P-1,N/P)

! Wait for communications to complete before next iteration

 wait(up)

 wait(down)

• Incorrect!

– overwriting old is the key issue

– need to know boundary values of old are sent before overwriting

15 May 2015 Traffic Modelling 16

http://www.epcc.ed.ac.uk/

Non-blocking sends: correct

! Implement boundary conditions

 Issend(old(N/P), up)

 Recv (old(1), down)

 Issend(old(1), down)

 Recv (old(N/P+1), up)

 call newroad(new, old, N/P)

 wait(up)

 wait(down)

 set old(i) = new(i) for i = 1,2,...,N/P-1,N/P)

15 May 2015 Traffic Modelling 17

http://www.epcc.ed.ac.uk/

Delaying the waits

! Implement boundary conditions

 Issend(old(N/P), up)

 Recv (old(1), down)

 Issend(old(1), down)

 Recv (old(N/P+1), up)

 call newroad(new, old, N/P)

 set old(i) = new(i) for i = 2,3,...,N/P-1)

 wait(up)

 old(N/P = new(M/P)

 wait(down)

 old(1) = new(1)

15 May 2015 Traffic Modelling 18

http://www.epcc.ed.ac.uk/

RMA synchronisation

15 May 2015 Traffic Modelling 19

• Similar synchronisation issues to non-blocking message

passing

– but worse!

http://www.epcc.ed.ac.uk/

20 HPC Concepts

Remote Memory Access

• Imagine we can do halo swaps directly with read or write

– where do synchronisation issues become important?

– what assumptions are you making about remote reads and writes?

• Consider remote read first

 old(0) = old(N/P) from previous process

 old(N/P+1) = old(1) from next process

 call newroad(new, old, N/P)

 set old(i) = new(i) for i = 1,2,...,N/P-1,N/P

http://www.epcc.ed.ac.uk/

21 HPC Concepts

Remote Memory Access

• Imagine we can do halo swaps directly with read or write

– where do synchronisation issues become important?

– what assumptions are you making about remote reads and writes?

• Consider remote read first

 old(0) = old(N/P) from previous process

 old(N/P+1) = old(1) from next process

 call newroad(new, old, N/P)

! synchronise to ensure my old values have all been read

 set old(i) = new(i) for i = 1,2,...,N/P-1,N/P

! synchronise to ensure neighbours’ old values have been

! updated before I read them on the next iteration

assuming reads are

blocking like Recv

http://www.epcc.ed.ac.uk/

22 HPC Concepts

Remote Memory Access

• Imagine we can do halo swaps directly with read or write

– where do synchronisation issues become important?

– what assumptions are you making about remote reads and writes?

• Consider remote writes

 set old(0) on next process = old(N/P)

 set old(N/P+1) on previous process = old(1)

 call newroad(new, old, N/P)

 set old(i) = new(i) for i = 1,2,...,N/P-1,N/P

http://www.epcc.ed.ac.uk/

23 HPC Concepts

Remote Memory Access

• Imagine we can do halo swaps directly with read or write

– where do synchronisation issues become important?

– what assumptions are you making about remote reads and writes?

• Consider remote writes

 set old(0) on next process = old(N/P)

 set old(N/P+1) on previous process = old(1)

! synchronise to ensure my halos on old have been updated

 call newroad(new, old, N/P)

 set old(i) = new(i) for i = 1,2,...,N/P-1,N/P

http://www.epcc.ed.ac.uk/

24 HPC Concepts

Remote Memory Access

• Imagine we can do halo swaps directly with read or write

– where do synchronisation issues become important?

– what assumptions are you making about remote reads and writes?

• Consider remote writes

 set old(0) on next process = old(N/P)

 set old(N/P+1) on previous process = old(1)

! synchronise to ensure my halos on old have been updated

 call newroad(new, old, N/P)

 set old(i) = new(i) for i = 1,2,...,N/P-1,N/P

! synchronise to ensure my neighbours have finished with their

! old arrays (in “newroad”) before overwriting them

assuming writes

behave like a Bsend

http://www.epcc.ed.ac.uk/

25 HPC Concepts

Summary

 • Synchronisation in PGAS approaches is not simple

– easy to write programs with subtle synchronisation errors

• Think first, code later!

http://www.epcc.ed.ac.uk/

