
Single-sided PGAS
Communications Libraries

Overview of PGAS approaches

David Henty, Alan Simpson (EPCC)

Harvey Richardson, Bill Long (Cray)

Shared-memory directives and OpenMP

memory

threads

2

OpenMP: work distribution

memory

threads

!$OMP PARALLEL DO

do i=1,32

 a(i)=a(i)*2

end do
1-8 9-16 17-24 25-32

3

OpenMP implementation

memory

threads

cpus

process

4

Shared Memory Directives

• Multiple threads share global memory

• Most common variant: OpenMP

• Program loop iterations distributed to threads,
more recent task features

 Each thread has a means to refer to private objects
within a parallel context

• Terminology

 Thread, thread team

• Implementation

 Threads map to user threads running on one SMP node

 Extensions to distributed memory not so successful

• OpenMP is a good model to use within a node

5

Cooperating Processes Models

6

processes

PROBLEM

Message Passing, MPI

memory

cpu

memory

cpu

memory

cpu

7

process

MPI

memory

cpu

process 0

memory

cpu

MPI_Send(a,...,1,…)

process 1

MPI_Recv(b,...,0,…)

8

Message Passing

• Participating processes communicate using a message-passing
API

• Remote data can only be communicated (sent or received) via
the API

• MPI (the Message Passing Interface) is the standard

• Implementation:
MPI processes map to processes within one SMP node or
across multiple networked nodes

• API provides process numbering, point-to-point and collective
messaging operations

• Mostly used in two-sided way, each endpoint coordinates in
sending and receiving

9

SHMEM

memory

cpu

process 0

memory

cpu

shmem_put(a, b, 1, …)

process 1

10

SHMEM

• Participating processes communicate using an API

• Fundamental operations are based on one-sided PUT and GET

• Need to use symmetric memory locations

• Remote side of communication does not participate

• Can test for completion

• Barriers and collectives

• Popular on Cray and SGI hardware, also Blue Gene version

• To make sense needs hardware support for low-latency RDMA-
type operations

11

Fortran 2008 coarray model

• Example of a Partitioned Global Address Space (PGAS)
model

• Set of participating processes like MPI

• Participating processes have access to local memory
via standard program mechanisms

• Access to remote memory is directly supported by
the language

12

Fortran coarray model

memory

cpu

process

memory

cpu

memory

cpu

process process

13

Fortran coarray model

memory

cpu

process

memory

cpu

memory

cpu

process process

14

a = b[3]

Fortran coarrays

• Remote access is a full feature of the language:

 Type checking

 Opportunity to optimize communication

• No penalty for local memory access

• Single-sided programming model more natural for
some algorithms

 and a good match for modern networks with RDMA

15

High Performance Fortran (HPF)

• Data Parallel programming model

• Single thread of control

• Arrays can be distributed and operated on in parallel

• Loosely synchronous

• Parallelism mainly from Fortran 90 array syntax, FORALL and
intrinsics.

• This model popular on SIMD hardware (AMT DAP, Connection
Machines) but extended to clusters where control thread is
replicated

16

HPF

17

memory

pe

memory

cpu

memory

pe

memory

pe

memory

pe

HPF

18

memory

pe

memory

cpu

memory

pe

memory

pe

memory

pe

A(1:N)=SQRT(A(1:N))

A(N) - distributed

UPC

memory

cpu

thread

memory

cpu

memory

cpu

thread thread

19

UPC

memory

cpu

thread

memory

cpu

memory

cpu

thread thread

20

upc_forall(i=0;i<32;i++;affinity){
 a[i]=a[i]*2;

}

UPC

• Extension to ISO C99

• Participating “threads”

• New shared data structures

 shared pointers to distributed data (block or cyclic)

 pointers to shared data local to a thread

 Synchronization

• Language constructs to divide up work on shared data

 upc_forall() to distribute iterations of for() loop

• Extensions for collectives

• Both commercial and open source compilers available

 Cray, HP, IBM

 Berkeley UPC (from LBL), GCC UPC

21

