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Shared-memory directives and OpenMP 
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OpenMP: work distribution 
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!$OMP PARALLEL DO 

do i=1,32 

  a(i)=a(i)*2 

end do 
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OpenMP implementation 
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Shared Memory Directives  

• Multiple threads share global memory 

• Most common variant: OpenMP 

• Program loop iterations distributed to threads, 
more recent task features 

 Each thread has a means to refer to private objects  
within a parallel context 

• Terminology 

 Thread, thread team 

• Implementation 

 Threads map to user threads running on one SMP node 

 Extensions to distributed memory not so successful 

• OpenMP is a good model to use within a node 
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Cooperating Processes Models 
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Message Passing, MPI 
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Message Passing 

• Participating processes communicate using a message-passing 
API 

• Remote data can only be communicated (sent or received) via 
the API 

• MPI (the Message Passing Interface) is the standard 

• Implementation: 
MPI processes map to processes within one SMP node or 
across multiple networked nodes 

• API provides process numbering, point-to-point and collective 
messaging operations 

• Mostly used in two-sided way, each endpoint coordinates in 
sending and receiving 
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SHMEM 
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SHMEM 

• Participating processes communicate using an API 

• Fundamental operations are based on one-sided PUT and GET 

• Need to use symmetric memory locations 

• Remote side of communication does not participate 

• Can test for completion 

• Barriers and collectives 

• Popular on Cray and SGI hardware, also Blue Gene version 

• To make sense needs hardware support for low-latency RDMA-
type operations 
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Fortran 2008 coarray model 

• Example of a Partitioned Global Address Space (PGAS) 
model 

• Set of participating processes like MPI 

• Participating processes have access to local memory 
via standard program mechanisms 

• Access to remote memory is directly supported by 
the language 
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Fortran coarray model 
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Fortran coarray model 
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Fortran coarrays 

• Remote access is a full feature of the language: 

 Type checking 

 Opportunity to optimize communication 

• No penalty for local memory access 

• Single-sided programming model more natural for 
some algorithms 

 and a good match for modern networks with RDMA 
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High Performance Fortran (HPF) 

• Data Parallel programming model 

• Single thread of control 

• Arrays can be distributed and operated on in parallel 

• Loosely synchronous 

• Parallelism mainly from Fortran 90 array syntax, FORALL and 
intrinsics. 

• This model popular on SIMD hardware (AMT DAP, Connection 
Machines) but extended to clusters where control thread is 
replicated 
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HPF 
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HPF 
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A(1:N)=SQRT(A(1:N)) 

A(N) -  distributed 



UPC 
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UPC 
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upc_forall(i=0;i<32;i++;affinity){ 
  a[i]=a[i]*2; 

} 



UPC 

• Extension to ISO C99 

• Participating “threads” 

• New shared data structures 

 shared pointers to distributed data (block or cyclic) 

 pointers to shared data local to a thread 

 Synchronization 

• Language constructs to divide up work on shared data 

 upc_forall() to distribute iterations of for() loop 

• Extensions for collectives 

• Both commercial and open source compilers available 

 Cray,  HP, IBM 

 Berkeley UPC (from LBL), GCC UPC 
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