
Parallel Models
Different ways to exploit parallelism

Outline
• Shared-Variables Parallelism

•  threads
•  shared-memory architectures

• Message-Passing Parallelism
•  processes
•  distributed-memory architectures

• Practicalities
•  compilers
•  libraries
•  usage on real HPC architectures

Shared Variables
Threads-based parallelism

Shared-memory concepts
• Have already covered basic concepts

•  threads can all see data of parent process
•  can run on different cores
•  potential for parallel speedup

Analogy
• One very large whiteboard in a two-person office

•  the shared memory

•  Two people working on the same problem
•  the threads running on different cores attached to the memory

• How do they collaborate?
•  working together
•  but not interfering

• Also need private data

my
data

shared
data

my
data

Thread 1 Thread 2
mya=23

mya=a+1

23

23 24

Program

Private
data

Shared
data

a=mya

Thread Communication

Synchronisation
• Synchronisation crucial for shared variables approach

•  thread 2’s code must execute after thread 1

• Most commonly use global barrier synchronisation
•  other mechanisms such as locks also available

• Writing parallel codes relatively straightforward
•  access shared data as and when its needed

• Getting correct code can be difficult!

Specific example
• Computing asum = a0+ a1 + … a7

•  shared:
•  main array: a[8]
•  result: asum

•  private:
•  loop counter: i
•  loop limits: istart, istop
•  local sum: myasum

•  synchronisation:
•  thread0: asum += myasum
•  barrier
•  thread1: asum += myasum

loop: i = istart,istop
 myasum += a[i]
end loop

asum

asum=0

Hardware

Memory

Processor

Shared Bus

Processor Processor Processor Processor

• Needs support of a shared-memory architecture

Threads: Summary
• Shared blackboard a good analogy for thread parallelism
• Requires a shared-memory architecture

•  in HPC terms, cannot scale beyond a single node

•  Threads operate independently on the shared data
•  need to ensure they don’t interfere; synchronisation is crucial

•  Threading in HPC usually uses OpenMP directives
•  supports common parallel patterns
•  e.g. loop limits computed by the compiler
•  e.g. summing values across threads done automatically

Message Passing
Process-based parallelism

Analogy
•  Two whiteboards in different single-person offices

•  the distributed memory

•  Two people working on the same problem
•  the processes on different nodes attached to the interconnect

• How do they collaborate?
•  to work on single problem

• Explicit communication
•  e.g. by telephone
•  no shared data

my
data

my
data

a=23 Recv(1,b)
Process 1 Process 2

23

23

24

23

Program

Data

Send(2,a) a=b+1

Process communication

Synchronisation
• Synchronisation is automatic in message-passing

•  the messages do it for you

• Make a phone call …
•  … wait until the receiver picks up

• Receive a phone call
•  … wait until the phone rings

• No danger of corrupting someone else’s data
•  no shared blackboard

Hardware

• Natural map to
distributed-memory
•  one process per

processor-core
•  messages go over

the interconnect,
between nodes/OS’s

Processor

Processor

Processor

Processor

Processor
Processor

Processor
Processor

Interconnect

Processes: Summary
• Processes cannot share memory

•  ring-fenced from each other
•  analogous to white boards in separate offices

• Communication requires explicit messages
•  analogous to making a phone call, sending an email, …
•  synchronisation is done by the messages

• Almost exclusively use Message-Passing Interface
•  MPI is a library of function calls / subroutines

Practicalities
•  8-core machine might only have 2

nodes
•  how do we run MPI on a real HPC

machine?

•  Mostly ignore architecture
•  pretend we have single-core nodes
•  one MPI process per processor-core
•  e.g. run 8 processes on the 2 nodes

•  Messages between processes on
the same node are fast
•  but remember they also share access

to the network

Interconnect

Message Passing on Shared Memory
• Run one process per core

•  don’t directly exploit shared memory
•  analogy is phoning your office mate
•  actually works well in practice!

my
data

my
data

• Message-passing
programs run by a
special job launcher
•  user specifies #copies
•  some control over

allocation to nodes

Summary
• Shared-variables parallelism

•  uses threads
•  requires shared-memory machine
•  easy to implement but limited scalability
•  in HPC, done using OpenMP compilers

• Distributed memory
•  uses processes
•  can run on any machine: messages can go over the interconnect
•  harder to implement but better scalability
•  on HPC, done using the MPI library

