
Domain Decomposition: Computational Fluid Dynamics

May 24, 2015

1 Introduction and Aims

This exercise takes an example from one of the most common applications of HPC resources: Fluid
Dynamics. We will look at how a simple fluid dynamics problem can be run on a system like ARCHER
and how varying the number of processes it runs on and the problem size affect the performance of the
code. This will require a set of simulations to be run and performance metrics plotted as a graph.

The CFD program differs from the more straightforward task farm in that the problem requires more
than source-worker-sink communications. Here the workers are in regular communication throughout
the calculation.

This exercise aims to introduce:

• Grids

• Communications – Halos

• Performance metrics

2 Fluid Dynamics

Fluid Dynamics is the study of the mechanics of fluid flow, liquids and gases in motion. This can en-
compass aero- and hydro- dynamics. It has wide ranging applications from vessel and structure design
to weather and traffic modelling. Simulating and solving fluid dynamic problems requires large compu-
tational resources.

Fluid dynamics is an example of continuous system which can be described by Partial Differential Equa-
tions. For a computer to simulate these systems, the equations must be discretised onto a grid. If this grid
is regular, then a finite difference approach can be used. Using this method means that the value at any
point in the grid is updated using some combination of the neighbouring points.

Discretisation is the process of approximating a continuous (i.e. infinite-dimensional) problem by a
finite-dimensional problem suitable for a computer. This is often accomplished by putting the calcula-
tions into a grid or similar construct.

2.1 The Problem

In this exercise the finite difference approach is used to determine the flow pattern of a fluid in a cavity.
For simplicity, the liquid is assumed to have zero viscosity which implies that there can be no vortices
(i.e. no whirlpools) in the flow. The cavity is a square box with an inlet on one side and an outlet on
another as shown below.

1

Figure 1: The Cavity

2.2 A bit of Maths

In two dimensions it is easiest to work with the stream function Ψ (see below for how this relates to the
fluid velocity). For zero viscosity Ψ satisfies the following equation:

∇2Ψ =
∂2Ψ

∂x2
+

∂2Ψ

∂y2
= 0

The finite difference version of this equation is:

Ψi−1,j + Ψi+1,j + Ψi,j−1 + Ψi,j+1 − 4Ψi,j = 0

With the boundary values fixed, the stream function can be calculated for each point in the grid by aver-
aging the value at that point with its four nearest neighbours. The process continues until the algorithm
converges on a solution which stays unchanged by the averaging process. This simple approach to solving
a PDE is called the Jacobi Algorithm.

In order to obtain the flow pattern of the fluid in the cavity we want to compute the velocity field ũ. The
x and y components of ũ are related to the stream function by

ux =
∂Ψ

∂y
=

1

2
(Ψi,j+1 −Ψi,j−1)

uy = −∂Ψ

∂x
= −1

2
(Ψi+1,j −Ψi−1,j)

This means that the velocity of the fluid at each grid point can also be calculated from the surrounding
grid points.

2

Figure 2: Breaking Up the Big Problem

2.3 An Algorithm

The outline of the algorithm for calculating the velocities is as follows:

Set the boundary values for Ψ and ũ
while (convergence= FALSE) do

for each interior grid point do
update value of Ψ by averaging with its 4 nearest neighbours

end do
check for convergence

end do
for each interior grid point do

calculate ux

calculate uy

end do

For simplicity, here we simply run the calculation for a fixed number of iterations; a real simulation
would continue until some chosen accuracy was achieved.

2.4 Broken Up

The calculation of the velocity of the fluid as it flows through the cavity proceeds in two stages:

• Calculate the stream function Ψ.

• Use this to calculate the x and y components of the velocity.

Both of these stages involve calculating the value at each grid point by combining it with the value of its
four nearest neighbours. Thus the same amount of work is involved to calculate each grid point, making
it ideal for the regular domain decomposition approach. Figure 2 shows how a two dimension grid can
be broken up into smaller grids for individual processes. This is usually known as Decomposition.

This process can hold for multiple other cases, where slices or sections of grids are sent to individual
processes and the results can be collated at the end of a calculation cycle.

3

Figure 3: Halo: Process A and Process B

2.5 Halos

Splitting up the big grid into smaller grids introduces the need for interprocess communications. Looking
at how each point is being calculated, how does the system deal with points on the edge of a grid? The
data a process needs has been shipped off to a different process.

To counter this issue, each grid for the different processes has to have a boundary layer on its adjoining
sides. This layer is not updated by the local process: it is updated by another process which in turn will
have a boundary updated by the local process. These layers are generally known as halos. An example
of this is show in Figure 3.

In order to keep the halos up to date, a halo swap must be carried out. When an element in process B
which adjoins the boundary layer with process A is updated and process A has been updating, the halo
must be swapped to ensure process B uses accurate data. This means that a communication between pro-
cesses must take place in order to swap the boundary data. This halo swap introduces communications
that if the grid is split into too many processes or the size of data transfers is very large, the communica-
tions can begin to dominate the runtime over actual processing work. Part of this exercise is to look at
how the number of processes affects the run-time for given problem sizes and evaluate what this means
for speed up and efficiency.

2.6 One-dimensional Domain decomposition for CFD example

For simplicity, we only decompose the problem in one dimension: the y-dimension. This means that the
problem is sliced up into a series of rectangular strips. Although for a real problem the domain would
probably be split up in both dimensions as in Figure 2, splitting across a single dimension makes the
coding significantly easier. Each process only needs to communicate with a maximum of two neighbours,
swapping halo data up and down.

4

3 Exercises

3.1 Compilation

Use wget to copy the file cfd.tar.gz from the ARCHER web pages to /work/ on ARCHER or
your home directory on Morar, as you did for the previous exercises. Now unpack the file and compile
the Fortran MPI CFD code as follows: after compilation, an executable file will have been created called
cfd.

guestXX@archer :~ > t a r −zxv f c f d . t a r . gz
c f d /
c f d / c f d . pbs
c f d / M a k e f i l e _ a r c h e r
c f d / M a k e f i l e _ m o r a r
c f d / c f d . f90

guestXX@archer :~ > cd c f d

To compile on ARCHER:

guestXX@archer : ~ / cfd > make −f M a k e f i l e _ a r c h e r
f t n −g −c c f d . f90
f t n −g −o c f d c f d . o

To compile on Morar:

−bash −4.1$ module l o a d mpich2−p g i
−bash −4.1$ make −f M a k e f i l e _ m o r a r
mpif90 −g −c c f d . f90
mpif90 −g −o c f d c f d . o

3.2 Run the program

ARCHER

Use emacs or your preferred editor to look at the cfd.pbs batch script:

! / b i n / bash −− l o g i n

#PBS − l s e l e c t =1
#PBS − l w a l l t i m e = 0 0 : 0 5 : 0 0
#PBS −A y14
#PBS −N c f d

Change t o d i r e c t o r y t h a t t h e j o b was s u b m i t t e d from
cd $PBS_O_WORKDIR

aprun −n 4 . / c f d 4 5000

The arguments to aprun have the following meaning:

• -n 4: run the code on 4 processes;

• ./cfd: use the cfd executable in the current directory;

5

• 4 5000: arguments to the cfd code to use a scale factor of 4, and run for 5000 iterations.

Morar

Use emacs or your preferred editor to look at the cfd.sge batch script.

You can modify SCALE and ITERATIONS to control the behaviour of the code:

! / b i n / bash
#$ −cwd −V
Thi s i s a t e m p l a t e s u b m i s s i o n s c r i p t f o r MPI b a t c h j o b s on morar

MPIEXE= ‘ basename $REQUEST . sge ‘
SCALE=4
ITERATIONS=5000

echo "−−"
echo " Running MPI program <$MPIEXE> on " $NSLOTS " p r o c e s s e s "
echo "−−"
echo

(t ime mpiexec −n $NSLOTS . / $MPIEXE $SCALE $ITERATIONS) 2>&1

echo
echo "−−−−−−−−−−−−−−−−−−−−"
echo " F i n i s h e d MPI program "
echo "−−−−−−−−−−−−−−−−−−−−"
echo

To launch the job (for example on four processors) use:

bash −4.1$ qsub −pe mpi 4 c f d

The arguments you can modify have the following meaning:

• SCALE=4: argument for running the cfd code: use a scale factor of 4;

• ITERATIONS=5000: argument for running the cfd code: run for 5000 iterations.

Modifying the problem size

The mimimum problem size (scale factor = 1) is taken as a 32 × 32 grid. The actual problem size can
be chosen by scaling this basic size, for example with a scale factor of 4 then it will use a 128 × 128
grid. Varying the number of processes and scale factor allows us to investigate Amdahl’s and Gustafson’s
laws. The number of iterations is not particularly important as we are interested in the time per iteration.
You can increase the number of iterations to ensure that the code does not run too fast on large numbers
of processes, or decrease it so it is not too slow for large problem sizes. Two things to note:

• The code assumes the problem size decomposes exactly onto the process grid. If this is not the
case (e.g. scale factor = 2 with 7 processes, since 7 is not a divisor of 64) it will complain and exit.

• If the output picture looks strange then you may not have used a sufficient number of iterations to
converge to the solution. This is not a problem in terms of the performance figures, but it is worth
running with more iterations just to check that the code is functioning correctly

Once you have run the job via the PBS batch system, the output file should look something like this
(depending on the exact parameters):

6

S c a l e f a c t o r = 4 , number o f i t e r a t i o n s = 5000
Running CFD on 128 x 128 g r i d u s i n g 4 p r o c e s s e s

S t a r t i n g main loop . . .

comple t ed i t e r a t i o n 1000
comple t ed i t e r a t i o n 2000
comple t ed i t e r a t i o n 3000
comple t ed i t e r a t i o n 4000
comple t ed i t e r a t i o n 5000

. . . f i n i s h e d

Time f o r 5000 i t e r a t i o n s was 0 .1763 s e c o n d s
Each i n d i v i d u a l i t e r a t i o n took 0 .3527E−04 s e c o n d s

W r i t i n g o u t p u t f i l e . . .
. . . f i n i s h e d

CFD comple t ed

Figure 4: Output Image

The code also produces some graphical output in the form of a gnuplot file cfd.plt. You can view this
as follows:

guestXX@archer :~ > g n u p l o t −p e r s i s t c f d . p l t

which should produce a picture similar to Figure 4.

If the fluid is flowing down the right-hand edge then along the bottomm, rather than through the middle
of the cavity, then this is an indication that the Jacobi algorithm has not yet converged. Convergence
requires more iterations on larger problem sizes.

7

3.3 Performance Evaluation

The next part of this exercise will be to determine what the best configuration for a group of problems
sizes in the CFD code would be. This will be worked out using two measures: speed-up and efficiency.

3.3.1 Speed-Up

The speedup of a parallel code is how much faster the parallel version runs compared to a non-parallel
version. Taking the time to run the code on 1 process is T1 and to run the code on P processes is TP , the
speedup S is found by:

S =
T1

TP
(1)

3.3.2 Efficiency

Efficiency is how the well the esources (available processing power in this case) are being used. This can
be thought of as the speed-up (or slow-down) per process. Efficiency E can be defined as:

E =
S

P
=

T1

PTP
(2)

where E = 1.0 means 100% efficiency, i.e. perfect scaling.

3.3.3 Doing The Work

The two main evaluation points:

• How do the speed-up and efficiency of the program vary as the number of processes is increased?

• Does this change as the problem size is varied?

To investigate the speedup and parallel efficiency the code should be run using the same problem size but
with varying numbers of processes. Calculate the speedup and efficiency (tables are provided overleaf
for this) and plot a graph of the speedup against the number of processes. Is there any apparent pattern,
e.g. does it follow Amdahl’slaw?

Now choose a different problem size and repeat the exercise. To increase the problem size increase the
scale factor; to decrease the size, decrease the scale factor. For example, setting scale factor = 2 will give
a problem size of 64x64; scale factor = 6 gives a size of 192x192.

What is the effect of problem size the parallel scaling of the code?

8

1. problem size (scalefactor) = iterations =

No of processes Time per iteration Speed-up Efficiency
1
2
4
8

16
32
64

128

2. problem size (scalefactor) = iterations =

No of processes Time per iteration Speed-up Efficiency
1
2
4
8

16
32
64

128

3. problem size (scalefactor) = iterations =

No of processes Time per iteration Speed-up Efficiency
1
2
4
8

16
32
64

128

4. problem size (scalefactor) = iterations =

No of processes Time per iteration Speed-up Efficiency
1
2
4
8

16
32
64

128

9

4 Compiler Investigation

We will use the CFD example to investigate how using different compilers and compiler options affects
performance.

4.1 Changing compilers on ARCHER

On ARCHER, the Fortran compiler is always called ftn. However, what compiler this actually points
to is determined by what module you have loaded.

For example, to switch from the default (Cray) compiler to the Intel compiler.

guestXX@archer:~> module switch PrgEnv-cray PrgEnv-intel
guestXX@archer:~> make clean
guestXX@archer:~> make

Here. make clean ensures that all compiled code is removed which means that the new code will be
built with the new compiler. The GNU compiler module is called PrgEnv-gnu.

4.2 Exercises

Here are a number of suggestions:

• By default, the code is built with the -g debugging option. Edit the Makefile to remove this and
recompile - what is the effect on performance?

• What is the difference between the performance of the code using the three different compilers
(Cray, Intel and GNU) with no compiler options?

• It is not really fair to compare compiler performance using default options: one compiler may sim-
ply have higher default settings than another. Using the option suggested in “Useful compiler op-
tipons” at http://www.archer.ac.uk/documentation/user-guide/development.php, compare the best
performance you can get with each compiler.

10

http://www.archer.ac.uk/documentation/user-guide/development.php

	Introduction and Aims
	Fluid Dynamics
	The Problem
	A bit of Maths
	An Algorithm
	Broken Up
	Halos
	One-dimensional Domain decomposition for CFD example

	Exercises
	Compilation
	Run the program
	Performance Evaluation
	Speed-Up
	Efficiency
	Doing The Work

	Compiler Investigation
	Changing compilers on ARCHER
	Exercises

