Concepts

Offloading with Intel LEO

Data Movement in Intel LEO

Asynchronous Execution

EPCC Training Day 1: Offload

James Briggs

Compiling and Running

1COSMOS DiRAC

April 29, 2015




Session Plan

@ Concepts

© Offloading with Intel LEO
© Data Movement in Intel LEO
@ Asynchronous Execution

© Compiling and Running



Concepts

Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution

Compiling and Running

Section 1

nae



Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Offloading — Accelerator Mode

App Running
on the Host

@ A program runs on the host and

m ” Hr o "Do this work with
offloads” work by specifying that i et
the Xeon Phi executes a block of deliver the results
as directed...
code.

@ The host also directs the
movement of data between the
host and the co-processor.

@ Similar data model to GPGPU.

Yoo Copiocesstt




Concepts

Offload Models

e Explicit
e Programmer explicitly directs data movement and code execution.
e This is achievable with Intel LEO, OpenMP 4.0, or with low level API.

@ Implicit Offload

e Virtual shared memory provided by Cilk Plus.
e Programmer marks some data as “shared” in the virtual sense.
e Runtime automatically synchronizes values between host and co-processor.

o Offload Enabled Library

e Library manages offloading and data movement internally.
o Examples: Intel MKL, MAGMA.



Concepts

Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution

Compiling and Running

Section 2

DA



Offloading with Intel LEO

Offload with Intel LEO

@ LEO - Language Extensions for Offload.

@ Add pragmas and new keywords to working code to make sections run on the
CO-processor.

@ Heterogeneous compiler
= generates code for both the processor and co-processor architecture.



Offloading with Intel LEO

Intel LEO — Offload Syntax

@ Designate a block of code to be ran on the coprocessor.

o C/C++:

#pragma offload target(mic[:target—number]) [,clause...]
e Fortran:

I'dir$ offload target(mic[:target—number]) [,clause...]

Idir$ end offload

@ target-number allows you to specify which logical Phi number if there are
multiple.



Offloading with Intel LEO

Intel LEO — Offloading Functions

@ Declare that a function or global variable should be compiled for both host and
coprocessor using attribute keyword.

o C/C++

__attribute__((target(mic))) int g_size;

__attribute__((target(mic)))
double myfunc(doublex a, doublex b)

@ Fortran:
Idir$ attributes offload : mic :: g_size
integer :: g_size;
Idir$ attributes offload : mic :: my_func

function myfunc(a, b)



Offloading with Intel LEO

Intel LEO — Offloading Functions

@ C/C++ — entire blocks of code:

#pragma offload_attribute (push,target(mic))
int g_size;

double myfunc(doublex a, doublex b)
{1

#pragma offload_attribute (pop)

@ Fortran — can only do variables:

I'dir$ options /offload_attribute_target=mic
integer :: g_size

real :: x

Idir$ end options



Concepts

Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution

Compiling and Running

Section 3

DA



Data Movement in Intel LEO

Data Movement

@ Memory on host and coprocessors are separate both physically and virtually.

e With LEO programmer must copy in/out explicitly:
e Programmer designates variables that need to be copied between host and card in
the offload pragma/directive.
e Provide additional clauses to the offload pragma.



Data Movement in Intel LEO

Data Movement Clauses

@ in(varl [,...1):
Copy from host to coprocessor.

@ out(varl [,...]):
Copy from coprocessor to host.

@ inout(varl [,...]1C
Copy from host to coprocessor and back to host at end.

@ nocopy(varl [,...]):
Don't copy selected variables.



Data Movement in Intel LEO

Data Movement Example

double a[100000], b[100000], c[100000], d[100000];

#pragma offload target(mic) \
in(a), out(c,d), inout(b)

#pragma omp parallel for
for (i=0; i<100000; i++) {
cli] =ali] + b[i];
d[i] = a[i] — b[i];
b[i] —b[i];

}



Data Movement in Intel LEO

Dynamically Allocated Data

@ Dynamically allocated data needs also to be allocated and freed on the
COprocessor.

o Add additional clauses to in/out/inout:
o length(element-count-expr):
Copy N elements of the pointer’s type
e alloc_if (condition):
Allocate memory to hold data referenced by pointer if condition is TRUE.
o free if (condition):
ree memory used by pointer if condition is TRUE



Data Movement in Intel LEO

Example

int N = 5000000;

double xa, xb;
a = (doublex) _mm_malloc(Nxsizeof(double) ,64);

b = (doublex) _mm_malloc(Nxsizeof (double) ,64);

#p.).ragma offload target(mic) \
in(a length(N) alloc_if (1) free_if (1)), \
out(b length (N) alloc_if (1) free_if(0))

#pragma omp parallel for

for (i=0; i<N; i++) {
b[i] = 2.0%a[i];



Data Movement in Intel LEO

Example — Useful Macros

@ More convenient and readable to use the following macros:

#define alloc_if (1) ALLOC
#define alloc_if (0) REUSE
#define free_if (1) FREE

#define free_if (0) RETAIN



Data Movement in Intel LEO

Example — with Macros

int N = 5000000;

double xa, xb;
a = (doublex) _mm_malloc(Nxsizeof(double) ,64);

b = (doublex) _mm_malloc(Nxsizeof (double) ,64);

#pragma offload target(mic) \
in(a length (N) ALLOC FREE), \
out(b length (N) ALLOC RETAIN)

#pragma omp parallel for

for (i=0; i<N; i++) {
b[i] = 2.0%a[i];



Data Movement in Intel LEO

Offload Transfer

@ Can also do a data-only offload, that only moves data and doesn’t execute code
on the coprocessor.

e Syntax C/C++:

#pragma offload_transfer target(mic[:target—number]) [,clause...]
o Fortran:
Idir$ offload_transfer target(mic[:target—number]) [,clause...]

@ All the clauses from the offload pragma also apply to offload transfer.



Data Movement in Intel LEO

Example

#pragma offload_transfer target(mic:0) \
in(a : length(N) ALLOC RETAIN), \
nocopy(b : length(N) ALLOC RETAIN)

@ a — the space is allocated on Phi and data is copied over.

@ b — the space is allocated on Phi, but no data is transferred.



Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Offload Dynamic Data Life-cycle

Host coprocessor

> %ocat
— L
C%%py over
&

‘__// Free
©),

Copy back

(D

e 3. #pragma offload inout(pA:length(n)) {...}



Concepts

Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution

Compiling and Running

Section 4

DA



Asynchronous Execution

Intel LEO — Offload Clauses

o if (stmt)
Allow a test at execution time for whether or not the executable should try to
offload the statement. If true then execute on the coprocessor.

@ signal(tag)
If clause is included then the offload section occurs asynchronously. This allows
for concurrent host / coprocessor usage.

e wait(tag)
Include it to specify a wait for completion of a previously initiated asynchronous
data transfer or asynchronous computation.



Concepts Offloading with Intel LEO Data Movement in Intel LEO

Intel LEO — Offload Clauses

Asynchronous Execution Compiling and Running

@ There is also a wait-only pragma
e C/C++ Syntax:

#pragma offload_wait target(mic[:target—number]) wait(s)
@ Fortran Syntax:

Idir$ offload_wait target(mic[:target—number]) wait(s)



Asynchronous Execution

Intel LEO — Usage Models

@ There are at least three different usage models for offload:

@ Host offloads and waits for the coprocessor to finish the task.
@ Host offloads and works on a different task.
@ Host offloads and works on a part of the same task.

@ Possible within MPI tasks and with multiple coprocessors.

@ Reverse offloading (coprocessor — host) possible in theory, but not implemented.



Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Usage Model — Offload / Wait

Processor Coprocessor

@ Most common offload model.

@ Host execution waits until coprocessor has finished.

Task0(); [:]

#pragma offload target(mic:0) R

{
Taskl(0, N);

[Task 2
}I'ask2() ; @

Task3();

Courtesy: John Pennycook (Intel Corp.)



Concepts Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution Compiling and Running

Usage Model — Concurrent

@ Common offload model. Processor Coprocessor

@ Host intiates asynchronous offload of one task, and
then executes a different task simultaneously.

Task0();

#pragma offload target(mic:0) signal(s)

{
Task1(0, N);
Task 3

Task2();
#pragma offload_wait target(mic:0) wait(s)

Task3();

Courtesy: John Pennycook (Intel Corp.)



Asynchronous Execution

Usage Model — Worksharing

Processor COQFOCESSOT
@ Least common offload model and hardest to do right.
@ Host and coprocessor work on different domains of the
same problem in parallel. . -
int s=0;
Task0();
#pragma offload target(mic:0) signal(s) =rrrmvimeIaad
{
Task1(0,3xN/4); :]
}
Taskl(3%N/4,N);
Task2(); =8
#pragma offload_wait target(mic:0) wait(s)
Task3();

Courtesy: John Pennycook (Intel Corp.)



Concepts

Offloading with Intel LEO Data Movement in Intel LEO Asynchronous Execution

Compiling and Running

Section 5

DA



Compiling and Running

Compiling and Running

e Compiling:
e To compile code that has offload sections no additional flags are needed by the Intel
compiler (MPSS install is required however).
@ Running:
o Controlled via environment variables:
export OFFLOAD_DEVICES=0
export MIC_LENV_PREFIX=MIC

export MICCOMP_NUM_THREADS=236
export MIC_KMP_AFFINITY=compact, granularity=fine



Compiling and Running

Compiling and Running

e STDOUT/STDERR are piped back to the host STDOUT/STDERR so print
statements can be seen in offload code.

@ Remember to flush:
printf (" Hello\n");
fflush (0);

@ Useful environment variables:

#ifdef __MIC__ // if code is compiled for MIC
#ifdef __LINTEL_.OFFLOAD // if code is offload code



Summary

Intel LEO Main Pragmas:

#pragma offload target(mic)
#pragma offload_transfer target(mic)
#pragma offload_wait target(mic)

Intel LEO Data Transfer Clauses:

in/out/inout/nocopy
alloc_if (), free_if()
length , into

Intel LEO Asynchronous Clauses:

signal(s), wait(s)



	Concepts
	Offloading with Intel LEO
	Data Movement in Intel LEO
	Asynchronous Execution
	Compiling and Running

