
Threaded
Programming

Lecture 8: Memory model, flush
and atomics

2

Why do we need a memory model?

•  On modern computers code is rarely executed in the same
order as it was specified in the source code.

•  Compilers, processors and memory systems reorder code to
achieve maximum performance.

•  Individual threads, when considered in isolation, exhibit as-if-
serial semantics.

•  Programmer’s assumptions based on the memory model
hold even in the face of code reordering performed by the
compiler, the processors and the memory.

3

Example

•  Reasoning about multithreaded execution is not that simple.

 T1 T2

 x=1; int r1=y;

 y=1; int r2=x;

•  If there is no reordering and T2 sees value of y on read to be
1 then the following read of x should also return the value 1.
If code in T1 is reordered we can no longer make this
assumption.

4

OpenMP Memory Model

•  OpenMP supports a relaxed-consistency shared memory
model.
–  Threads can maintain a temporary view of shared memory which is

not consistent with that of other threads.
–  These temporary views are made consistent only at certain points in

the program.
–  The operation which enforces consistency is called the flush

operation

5

Flush operation

•  Defines a sequence point at which a thread is guaranteed
to see a consistent view of memory
–  All previous read/writes by this thread have completed and are

visible to other threads
–  No subsequent read/writes by this thread have occurred
–  A flush operation is analogous to a fence in other shared memory

API’s

6

Flush and synchronization

•  A flush operation is implied by OpenMP synchronizations,
e.g.
–  at entry/exit of parallel regions
–  at implicit and explicit barriers
–  at entry/exit of critical regions
–  whenever a lock is set or unset
….
(but not at entry to worksharing regions or entry/exit of master regions)

•  Note: using the volatile qualifier in C/C++ does not give
sufficient guarantees about multithreaded execution.

7

Example: producer-consumer pattern

•  This is incorrect code

•  The compiler and/or hardware may re-order the reads/writes
to a and flag, or flag may be held in a register.

•  OpenMP has a flush directive which specifies an explicit
flush operation
–  can be used to make the above example work
!$omp flush #pragma omp flush

 Thread 0

a = foo();
flag = 1;

 Thread 1

while (!flag);
b = a;

8

Using flush

•  In order for a write of a variable on one thread to be
guaranteed visible and valid on a second thread, the
following operations must occur in the following order:

1.  Thread A writes the variable
2.  Thread A executes a flush operation
3.  Thread B executes a flush operation
4.  Thread B reads the variable

9

Example: producer-consumer pattern

 Thread 0

a = foo();
#pragma omp flush
flag = 1;
#pragma omp flush

 Thread 1

#pragma omp flush
while (!flag){
#pragma omp flush
}
#pragma omp flush
b = a;

	

First flush ensures flag
is written after a

Second flush ensures
flag is written to
memory

First and second flushes
ensure flag is read
from memory

Third flush ensures
correct ordering of
flushes

10

Using flush

•  Using flush correctly is difficult and prone to subtle bugs
–  extremely hard to test whether code is correct
–  may execute correctly on one platform/compiler but not on another
–  bugs can be triggered by changing the optimisation level on the

compiler

•  Don’t use it unless you are 100% confident you know what
you are doing!
–  and even then……

11

ATOMIC directive

•  Used to protect a single update to a shared variable.

•  Applies only to a single statement.

•  Syntax:

Fortran: !$OMP ATOMIC

 statement

where statement must have one of these forms:

x = x op expr, x = expr op x, x = intr (x, expr) or

x = intr(expr, x)

op is one of +, *, -, /, .and., .or., .eqv., or .neqv.

intr is one of MAX, MIN, IAND, IOR or IEOR

12

ATOMIC directive (cont)

C/C++: #pragma omp atomic

 statement

where statement must have one of the forms:

x binop = expr, x++, ++x, x--, or --x

and binop is one of +, *, -, /, &, ^, <<, or >>

•  Note that the evaluation of expr is not atomic.

•  May be more efficient than using CRITICAL directives, e.g. if
different array elements can be protected separately.

•  No interaction with CRITICAL directives

13

ATOMIC directive (cont)

Example (compute degree of each vertex in a graph):

#pragma omp parallel for

 for (j=0; j<nedges; j++){

#pragma omp atomic

 degree[edge[j].vertex1]++;

#pragma omp atomic

 degree[edge[j].vertex2]++;

 }

Other atomic forms

•  Sometimes we may wish to enforce atomic behaviour for
operations other than updates

14

#pragma omp atomic read	

 v = x;

#pragma omp atomic write
 x = expr;

#pragma omp atomic capture
{v = x; x binop= expr;}

!$omp atomic read	

 v = x

!$omp atomic write
 x = expr

!$omp atomic capture
 v = x
 x = x op expr
!$omp end atomic

15

Example: producer-consumer pattern
 Thread 0

a = foo();
#pragma omp flush
#pragma omp atomic write
flag = 1;
#pragma omp flush

 Thread 1

#pragma omp flush
while (!myflag){
#pragma omp flush
#pragma omp atomic read
 myflag = flag;
}
#pragma omp flush
b = a;

	

To be strictly correct we should use atomics to avoid the
race condition on flag.

