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terms: You must give appropriate credit, provide a link to the license and indicate if changes were made. If you adapt or 
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Note that this presentation contains images owned by others. Please seek their permission before reusing these 
images. 



I/O 
•  I/O essential for all applications/codes 

•  Some data must be read in or produced 
•  Instructions and Data 

• Basic hierarchy 
•  CPU – Cache – Memory – Devices (including I/O) 

• Often “forgotten” for HPC systems 
•  Linpack not I/O bound 
•  Not based on CPU clock speed or memory size 

• Often “forgotten” in program 
•  Start and end so un-important 
•  Just assumed overhead 



I/O 

• Small parallel programs (i.e. under 1000 processors) 
•  Cope with I/O overhead 

• Large parallel programs (i.e. tens of thousand 
processors) 
•  Can completely dominate performance 
•  Exacerbate by poor functionality/performance of I/O systems 

• Any opportunity for program optimisation important 
•  Improve performance without changing program 



Challenges of I/O 
•  Moves beyond process-memory model 

•  data in memory has to physically appear on an external device 
•  Files are very restrictive 

•  Don’t often map well to common program data structures (i.e. flat file/
array) 

•  Often no description of data in file 
•  I/O libraries or options system specific 

•  Hardware different on different systems 
•  Lots of different formats 

•  text, binary, big/little endian, Fortran unformatted, ... 
•  Different performance and usability characteristics 

•  Disk systems are very complicated 
•  RAID disks, caching on disk, in memory, I/O nodes, network, etc… 



Challenges of I/O 
•  Standard computer hardware 

– Possibly multiple disks 
– PATA, SATA, SCSI (SAS) 

•  Optimisations 
– RAID (striping and replication) 
– Fast disks (SSD or server) 

•  HPC/Server/SAN hardware 
– Many disks 
– SCSI (SAS), Fibre channel 

•  Optimisations 
– Striped  
– Multiple adapters and network 

interfaces 
•  Network filesystems 

– Provide access to data from many 
machines and for many users 
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Performance 

Interface Throughput 
Bandwith (MB/s) 
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High Performance or Parallel I/O 
•  Lots of different methods for providing high performance I/O 
•  Hard to support multiple processes writing to same file 

•  Basic O/S does not support 
•  Data cached in units of disk blocks (eg 4K) and is not coherent 
•  Not even sufficient to have processes writing to distinct parts of file 

•  Even reading can be difficult 
•  1024 processes opening a file can overload the filesystem Limit on file 

handles etc…. 
•  Data is distributed across different processes 

•  Dependent on number of processors used, etc… 
•  Parallel file systems may allow multiple access 

•  but complicated and difficult for the user to manage 



HPC/Parallel Systems 
•  Basic cluster 

– Individual nodes 
– Network attached filesystem 
– Local scratch disks 
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•  Multiple I/O systems 
–  Home and work 
–  Optimised for production or for 

user access 
•  Many options for optimisations 

–  Filesystem servers, caching, 
etc… 
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I/O Strategies 

•  Basic one file for a program 
•  Works fine for serial 
•  Most codes use this initially 
•  Works for shared memory parallelism 

•  Distributed memory 
•  Data now not in single memory space 

•  Master I/O  
•  Use communication to get and send all data from one process 
•  High overhead 
•  Use single file 
•  Memory issues, no access to I/O resources at scale 



I/O Strategies cont. 
•  Individual files 

•  Each process writes own file (either on shared filesystem or 
local scratch space) 

•  Use as much of I/O system as possible 
•  file contents dependent on number of CPUs and 

decomposition 
•  pre / post-processing steps needed to change number of 

processes 
•  Filesystem breaks down for large numbers of processors 
•  File handles or number of files a problem 

• Look to better solution 
•  I/O libraries 



MPI-I/O 
•  Aim to provide distributed access to single file 

•  File shared 
•  Control by programmer 
•  Look like a serial program has written the data 

•  Part of MPI-2 standard 
•  Not always available in MPI implementations 
•  http://www.mpi-forum.org/docs/docs.html 
•  Can use ROMIO (MPI-IO built on MPI-1 calls) 
•  Performance dependent on implementation 

•  Built on MPI collective operations 
•  Data structure defined by programmer 



MPI-I/O cont. 
• Array based I/O 

•  Each process creates description of subset it holds (derived 
datatype) 

•  No checking of correctness 
• Library handles read and write to files 

•  Don’t ever have all in memory 
•  Everything done with MPI calls 
•  Scale as well as MPI communications 
•  Best performance for big reads/writes 

•  Info object for passing system specific information   
•  Lots of optimisations, tweaking, etc… 



HDF5 
•  Hierarchical Data Format 

•  Model for managing and storing data 
•  Binary data format, library, and tools 
•  HDF5 library implements model and provides functionality to transform 

data between stored forms 
•  Extensible and portable 
•  Data preservation 

•  Based on two types of objects 
•  Datasets: Multidimensional arrays 
•  Groups: Containers for holding datasets (or other groups) 

•  Hierachical storage 
•  Filesystem like access possible 
•  /path/to/resource  



Optimisation and Parallel HDF5 

• Optimisation options 
•  File level, Data transfer level, Memory management, File space 

management, Chunking, Compact storage 
•  H5Pset_buffer: set size of internal data transfer buffer 

• Parallel version 
•  Uses MPI and MPI-I/O 
•  Same functionality as HDF5 



NetCDF 
•  Network Common Data Format 

•  Data model 
•  File format 
•  Application programming interface (API) 
•  Library implementing the API 
 

•  NetCDF 
•  Created in the US by unidata for earth science and geoscience data, supported 

by the NSF 
  

•  NetCDF 
•  Software library and self-describing data format 
•  Portable, machine independent data 
•  Can use HDF5 or NetCDF format (HDF5 gives larger files and unlimited array 

dimensions) in NetCDF 4.0 (latest version) 



NetCDF 
•  The netCDF niche is array-oriented scientific data. 

•  Uses portable files as unit of self-describing data (unlike databases) 
•  Emphasizes efficient direct access to data within files (unlike XML) 
•  Provides a multidimensional array abstraction for scientific applications 

(unlike databases and XML) 
•  Avoids dependencies on external tables and registries (unlike GRIB 

and BUFR) 
•  Emphasizes simplicity over power (unlike HDF5) 
•  Has built-in client support for network access to structured data from 

servers 
•  Has a large enough community of users to foster development of: 

•  support in many third-party applications 
•  third-party APIs for other programming and scripting languages 
•  community conventions, such as Climate and Forecast (CF) metadata 

conventions 



NetCDF 
•  NetCDF has changed over time, so it includes the following: 

•  Two data models  
•  classic model (netCDF-1, netCDF-2, netCDF-3) 
•  enhanced model (netCDF-4) 

•  Two formats with variants  
•  classic format and 64-bit offset variant for large files 
•  netCDF-4 (HDF5-based) format and classic model variant 

•  Two independent flavors of APIs  
•  C-based interfaces (C, C++, Fortran-77, Fortran-90, Perl, Python, Ruby, Matlab, ...) 
•  Java interface 

•  However, newer versions support: 
•  all previous netCDF data models 
•  all previous netCDF formats and their variants 
•  all previous APIs 
•  Files written through one language API are readable through other language 

APIs.  





NetCDF 

•  Common data model 
•  Variables: N-dimensional arrays of  char, byte, short, int, float, double  
•  Dimensions: Name and length 
•  Attributes: Annotations and other metadata 
•  Groups: Hierarchical, similar to directories 
•  User-defined types  

•  Parallel functionality 
•  Parallel HDF5 
•  Parallel NetCDF 



NetCDF file 
•  NetCDF files are containers for Dimensions, Variables, and 

Global Attributes 
•  File (dataset) contains the following: 

•  path name 
•  dimensions* 
•  variables* 
•  global (file-level) attribute* 
•  data values associated with the variables.* 
•  (*optional) 

•  enhanced data model can contain multiple groups 
•  group -> dataset 
•  groups can be nested 



NetCDF file 
netcdf pres_temp_4D {  
 dimensions:  
   level = 2 ;  
   latitude = 6 ;  
   longitude = 12 ;  
   time = UNLIMITED ; 
 variables:  
   float latitude(latitude); 
    latitude:units = "degrees_north" ;  
   float longitude(longitude) ;  
    longitude:units = "degrees_east" ;  
   float pressure(time, level, latitude, longitude) ;  
    pressure:units = "hPa" ;  
   float temperature(time, level, latitude, longitude) ; 

     temperature:units = "celsius" ;  
 data:  
   latitude = 25, 30, 35, 40, 45, 50 ;  
   longitude = -125, -120, … ;  
   pressure = 900, 901, 902, … ;  
   temperature = 9, 10, 11, …; 
}  



NetCDF dimensions 
• Specify variable shapes, common grids, and co-ordinate 

systems 
•  Has a name and length 
•  can be used by multiple variables 
•  can associated with coordinate variables to identify coordinate 

axes. 

•  classic netCDF 
•  at most one dimension can have the unlimited length (record 

dimension) 

•  enhanced netCDF 
•  multiple dimensions can have the unlimited length. 



Variables 
•  Variables define the things that hold data: 

•  Has a name, type, shape, can have attributes, and values.  
•  Type: 

•  Classic NetCDF type is the external type of its data as represented on disk, i.e. 
•  char 
•  byte (8 bits) 
•  short (16 bits) 
•  int (32 bits) 
•  float (32 bits) 
•  double (64 bits) 

•  Enhanced NetCDF 
•  Adds unsigned type; ubyte, ushort, uint, uint64 
•  Adds int64 (64 bits), string (variable-length string of characters) 
•  User defined types 

•  Shape: 
•  list of dimensions.  
•  no dimensions: a scalar variable with only one value 
•  1 dimension: a 1-D (vector) variable 
•  2 dimensions: a 2-D (matrix or grid) variable 

•  Attribute: 
•  specify properties, i.e. units 



Attributes 
• Metadata about variables or datasets 
• Attribute has: 

•  Name 
•  Type (same as variable types) 
•  Values 

• Can have scalar or 1-D values 
• Cannot be nested 

When to use attributes 
•  intended for metadata 
•  for single values, strings, or 

small 1-D arrays 
•  atomic access, must be 

written or read all at once 
•  values typically don't change 

after creation 
•  length specified when 

created 
•  attributes are read when file is 

opened 



Co-ordinate variables 
• Variable with same name as a dimension 

•  By convention these specify physical co-ordinate (i.e. lat, lon, level, 
time, etc…) associated with that dimension 

•  Not special in NetCDF, but often interpreted by programs that use 
NetCDF as special. 

•  Allows indexing through position on dimension and matching to co-
ordinates 



CDL (Common Data Language) 
•  Human readable notation for NetCDF datasets and data 

•  Obtain from NetCDF file using the ncdump program 

 netcdf example {   // example of CDL notation 
  dimensions: 

   x = 3 ; 
   y = 8 ; 

  variables: 
   float rh(x, y) ; 
    rh:units = "percent" ; 
    rh:long_name = "relative humidity" ; 

  // global attributes 
   :title = "simple example, lacks some conventions" ; 

  data: 
   rh = 
    2, 3, 5, 7, 11, 13, 17, 19, 
    23, 29, 31, 37, 41, 43, 47, 53, 
    59, 61, 67, 71, 73, 79, 83, 89 ; 
  } 



NetCDF utilities 
•  ncdump 

•  Produce CDL version of NetCDF file 
•  Dump everything, or subset, or just metadata, show indices in C or FORTRAN 

order, etc… 
•  ncgen 

•  Generate NetCDF file from CDL version 
•  Generate C, FORTRAN, or Java program which would produce the NetCDF file 

•  ncdump and ncgen let you edit NetCDF files manually, or create the 
program structure that will read/write a NetCDF file in the format you 
desire automatically 

•  nccopy 
•  Copy NetCDF file to new file 
•  Can compress and change file format (i.e. classic to enhanced) 

•  nc-config 
•  Generate flags necessary to link a program with NetCDF, i.e.: 
cc `nc-config --cflags` myapp.c -o myapp `nc-config --libs`  
f95 `nc-config --fflags` yrapp.f -o yrapp `nc-config --flibs` 



NetCDF programming interfaces 
•  NetCDF APIs 

•  C, FORTRAN 77, FORTRAN 90, C++, Perl, Java, Python, Ruby, NCL, Matlab, Objective C, Ada, R 
•  C interface is used as the core of all but the Java interface 
#include <netcdf.h> 
… 
  int ncid, x_dimid, y_dimid, varid; 
  int dimids[NDIMS]; 
  int data_out[NX][NY]; 
  … 
  if ((retval = nc_create(FILE_NAME, NC_CLOBBER, &ncid))){ 
      printf("Error: %s\n", nc_strerror(retval));  
      exit(1); 
  } 
  nc_def_dim(ncid, "x", NX, &x_dimid);  
  nc_def_dim(ncid, "y", NY, &y_dimid); 
  dimids[0] = x_dimid; 
  dimids[1] = y_dimid; 
  nc_def_var(ncid, "data", NC_INT, NDIMS,dimids, &varid); 
  nc_enddef(ncid)); 
  nc_put_var_int(ncid, varid, &data_out[0][0]); 
  nc_close(ncid) 
… 



F90 API example 
use netcdf 
  integer :: ncid, varid, dimids(NDIMS) 
  integer :: x_dimid, y_dimid 
  call check( nf90_create(FILE_NAME, NF90_CLOBBER, ncid) ) 
  call check( nf90_def_dim(ncid, "x", NX, x_dimid) ) 
  call check( nf90_def_dim(ncid, "y", NY, y_dimid) ) 
  dimids =  (/ y_dimid, x_dimid /) 
  call check( nf90_def_var(ncid, "data", NF90_INT, dimids, varid) ) 
  call check( nf90_enddef(ncid) ) 
  call check( nf90_put_var(ncid, varid, data_out) ) 
  call check( nf90_close(ncid) ) 
 
contains 
  subroutine check(status) 
    integer, intent ( in) :: status 
     
    if(status /= nf90_noerr) then  
      print *, trim(nf90_strerror(status)) 
      stop "Stopped" 
    end if 
  end subroutine check   



Java API example 
import ucar.nc2.Dimension; 
import ucar.ma2.*; 
import ucar.nc2.NetcdfFileWriter; 
import ucar.nc2.Variable; 
    NetcdfFileWriter dataFile = null; 
    try { 
      dataFile = NetcdfFileWriter.createNew(NetcdfFileWriter.Version.netcdf3, filename); 
      Dimension xDim = dataFile.addDimension(null, "x", NX); 
      Dimension yDim = dataFile.addDimension(null, "y", NY); 
      List<Dimension> dims = new ArrayList<>(); 
      dims.add(xDim); 
      dims.add(yDim); 
      Variable dataVariable = dataFile.addVariable(null, "data", DataType.INT, dims); 
      dataFile.create(); 
      dataFile.write(dataVariable, dataOut); 
    } catch (IOException e) { 
      e.printStackTrace(); 
    } catch (InvalidRangeException e) { 
      e.printStackTrace(); 
    } finally { 
      if (null != dataFile) 
        try { 
          dataFile.close(); 
        } catch (IOException ioe) { 
          ioe.printStackTrace(); 
        } 
    } 

 



Python API example 
#from netCDF4_classic import Dataset  
#from numpy import arange, dtype  
nx = 6; ny = 12 
ncfile = Dataset('simple_xy.nc','w')  
data_out = arange(nx*ny) # 1d array 
data_out.shape = (nx,ny) # reshape to 2d array. 
ncfile.createDimension('x',nx) 
ncfile.createDimension('y',ny) 
data = 
ncfile.createVariable('data',dtype('int32').char,
('x','y')) 
data[:] = data_out 
ncfile.close() 
print '*** SUCCESS writing example file simple_xy.nc!' 



C++ API example 
#include <netcdf> 
using namespace netCDF; 
using namespace netCDF::exceptions; 
  try 
    {   
      NcFile dataFile("simple_xy.nc", NcFile::replace);    
      NcDim xDim = dataFile.addDim("x", NX); 
      NcDim yDim = dataFile.addDim("y", NY); 
      vector<NcDim> dims; 
      dims.push_back(xDim); 
      dims.push_back(yDim); 
      NcVar data = dataFile.addVar("data", ncInt, dims); 
      data.putVar(dataOut); 
      return 0;  
    } 
  catch(NcException& e) 
    {e.what(); 
      return NC_ERR; 
    } 
} 



High-performance NetCDF 
•  Enhanced NetCDF (version 4 and beyond) 

•  Built on HDF5 
•  Uses HDF5 for parallel/high performance I/O 
•  Files need to be stored in HDF5 format 
  #include "netcdf.h" 
  #include "hdf5.h" 
         MPI_Comm comm = MPI_COMM_WORLD; 
         MPI_Info info = MPI_INFO_NULL; 
         int ncid, v1id, dimids[NDIMS]; 
         size_t start[NDIMS], count[NDIMS]; 
         res = nc_create_par(FILE, NC_NETCDF4|NC_MPIIO, comm, info, &ncid)l 
         res =nc_def_dim(ncid, "d1", DIMSIZE, dimids); 
         res = nc_def_dim(ncid, "d2", DIMSIZE, &dimids[1]; 
         res = nc_def_var(ncid, "v1", NC_INT, NDIMS, dimids, &v1id); 
         res = nc_enddef(ncid); 
         start[0] = mpi_rank * DIMSIZE/mpi_size; 
         start[1] = 0; 
         count[0] = DIMSIZE/mpi_size; 
         count[1] = DIMSIZE; 
         res =nc_var_par_access(ncid, v1id, NC_INDEPENDENT);  
         res = nc_put_vara_int(ncid, v1id, start, count, &data[mpi_rank*QTR_DATA]); 
         res = nc_close(ncid); 
         MPI_Finalize(); 



Parallel NetCDF 
•    Parallel-NetCDF 

•  Parallel I/O library to support parallel I/O in NetCDF (CDF-1 
and CDF-2) 

•  Also supports extended CDF-2 (CDF-5) 
     
    ret = ncmpi_create(MPI_COMM_WORLD, argv[1], 
                       NC_CLOBBER|NC_64BIT_OFFSET,MPI_INFO_NULL,&ncfile); 
    ret = ncmpi_def_dim(ncfile, "d1", nprocs, &dimid); 
    ret = ncmpi_def_var(ncfile, "v1", NC_INT, ndims, &dimid, &varid1); 
    ret = ncmpi_def_var(ncfile, "v2", NC_INT, ndims, &dimid, &varid2); 
    ret = ncmpi_put_att_text(ncfile, NC_GLOBAL, "string", 13, buf); 
    ret = ncmpi_enddef(ncfile); 
    ret = ncmpi_put_vara_int_all(ncfile, varid1, &start, &count, &data); 
    ret = ncmpi_put_vara_int_all(ncfile, varid2, &start, &count, &data); 
    ret = ncmpi_close(ncfile); 
    MPI_Finalize(); 



NetCDF on ARCHER 
• We have three versions of NetCDF on ARCHER all 

available through modules: 
•  NetCDF version 4 

•  module: Cray-netcdf: versions: 4.3.2  4.3.0, 4.3.1, 4.3.2 
•  NetCDF version 4 built with HDF5 parallel functionality 

•  module:cray-netcdf-hdf5parallel: versions: 4.3.2 4.3.0, 4.3.1, 4.3.2 
•  Parallel NetCDF 

•  module: cray-parallel-netcdf: versions: 1.5.0 1.3.1.1, 1.4.0, 1.4.1, 1.5.0 



Performance 



Performance – HDF5 vs MPI-I/O 



What to use? 
•  This all assumes you are interested in parallel computing 
•  If raw performance is biggest issue for you 

•  MPI-I/O 

•  If metadata/storage format is biggest issue for you 
•  HDF5 

•  If you want to integrate with earth science tools 
•  NetCDF 



Lustre 
•  Three functional units 

•  Object Storage Servers (OSS) 
l  Store data on one or more Object Storage Targets (OST) 
l  The OST handles interaction between client data request and underlying 

physical storage 
•  An OSS typically serves 2-8 targets, each target a local disk system. The 

capacity of the Lustre file system is the sum of the capacities provided by 
the targets 

•  The OSS operate in parallel, independent of one another 
•  Metadata Target (MDT) 

•  One per filesystem, storing all metadata: filenames, directories, 
permissions, file layout 

•  Stored on Metadata Server (MDS) 
•  Clients 

•  Supports standard POSIX access 



Lustre cont. 



Lustre cont… 
• Supports different networks 

•  Infiniband, Ethernet, Myrinet, Quadrics 

• Striping 
•  Data striped across OSTs (round robin) 
•  File split into units 
•  Simultaneous read/write to different units 



Lustre commands 
•  Striping cont. 

•  Improves bandwidths, overall performance available, and maximum file 
size 

•  Incurs communication overhead and contention potentials including 
serialisation if multiple processes accessing same units 

•  lfs command for more information and configuration 
 adrianj@nid16958:~>lfs df –h      
 (query number of OSTs) 
 adrianj@nid16958:~> lfs getstripe dirname  
 (query stripe count, stripe size) 
 adrianj@nid16958:~> lfs setstripe dirname 0 -1 -1 
 (set large file stripe size, start index, stripe count) 
 adrianj@nid16958:~> lfs setstripe dirname 0 -1 1 
 (set lots of files stripe size, start index, stripe count) 

 



Lustre on ARCHER 
• See white paper on I/O performance on ARCHER: 

•  http://www.archer.ac.uk/documentation/white-papers/
parallelIO/ARCHER_wp_parallelIO.pdf  



GPFS 
•  IBM General Purpose Filesystem 

•  Files broken into blocks, striped over disks 
•  Distributed metadata (including dir tree) 
•  Extended directory indexes 
•  Failure aware (partition based) 
•  Fully POSIX compliant 

•  Storage pools and policies 
•  Groups disks  
•  Tiered on performance, reliability, locality 
•  Policies move and manage data 
•  Active management of data and location 

•  High performance 



GPFS cont… 
• Configuration 

•  Shared disks (i.e. SAN attached to cluster) 
•  Network Shared disks (NSD) using NSD servers 
•  NSD across clusters (higher performance NFS) 



AFS 
•  Andrews Filesystem 

•  Large/wide scale NFS 
•  Distributed, transparent 
•  Designed for scalability 

•  Server caching 
•  File cached local, read and writes done locally 
•  Servers maintain list of open files (callback coherence) 
•  Local and shared files 

•  File locking 
•  Doesn’t support large databases or updating shared files 

•  Kerberos authentication 
•  Access control list on directories for users and groups 



POSIX I/O 
• Standard interface to files 

•  Unix/Linux approach 
•  Based on systems with single filesystem 
•  open, close, write, read, etc… 

• Does not support parallel or HPC I/O well 
•  Many NFS don’t fully implement it for performance reasons 

• Some work on extending for HPC 


