NATURAL
ENVIRONMENT E P S R‘
RESEARCH COUNCIL

ARCHER Single Node
Optimisation

Introduction to performance optimisation

Slides contributed by Cray and EPCC

QONIVE,?&
Y N7 &
(©)archer epccl @
< JJ,“ (<)
(COINB‘)<z~




Overview

Why do we optimise

What is performance optimisation
When do we optimise

The optimisation cycle

Trends in computer architecture
Types of optimisation

epcc




-
Why"?

Large computer simulations are becoming common in
many scientific disciplines.
These often take a significant amount of time to run.
Sometimes they take too long.
There are three things that can be done
Change the science (compromise the research)

Change the computer (spend more money)
Change the program (this is performance optimisation)

epce




-
What?

There are usually many different ways you can write a
program and still obtain the correct results.

Some run faster than others.

Interactions with the computer hardware.

Interactions with other software.
Performance optimisation is the process of making an
existing working computer program run faster in a

particular Hardware and Software environment.

Converting a sequential program to run in parallel is an example of
optimisation under this definition!

epce




-
When?

Performance optimisation can take large amounts of
development time.

Some optimisations improve program speed at the cost of
making the program harder to understand (increasing the
cost of future changes)

Some optimisations improve program speed at the cost of

making the program more specialised and less general
purpose.

It is always important to evaluate the relative costs and
benefits when optimising a program

This requires the ability to estimate potential gains in advance

epcc




Example:

Lattice QCD

Simulation of the underlying theory of particle physics.
Requires very large amounts of computer time.
A single simulation can take months of supercomputer time.

Over 90% of the runtime is in a very small number of
kernel routines

Almost any amount of optimisation effort expended on the kernel
routines will be justified.

epce




-
How?

- Performance optimisation usually follows a cycle:




Measuring performance

It is not enough to just measure overall speed
You need to know where the time is going.

There are tools to help you do this
They are called profiling tools.

They give information about:

Which sections of code are taking the time
Sometimes line by line but usually only subroutines.

Sometimes the type of operation
memory access
floating point calculations
file access

Make sure you understand how variable your results are
Are the results down to my changes or just random variation?

epce




Input dependence

Many codes perform differently with different input data.

Use multiple sets of input data when measuring
performance.

Make sure these are representative of the problems
where you want the code to run quickly.

epce

S
N~y %
M
@)
<




Only optimise important
sections

lts only worth working on parts of the code that take a lot
of time.

Large speed-up of unimportant sections have little
iImpact on the overall picture.
Amdahl’s law is this concept applied to parallel processing.
Same insight applies to other forms of optimisation.

epcc




40%
90%

40%




e
Theory

Optimisation is an experimental process.
You propose reasons why a code section is slow.
Make corresponding changes.

The results may surprise you
Need to revise the theory

Never “optimise” without measuring the impact.

epcc




-
Exit ?

It is important to know when to stop.

Each time you propose a code change consider:

The likely improvement
Code profile and Amdahl's law helps here.

Take account of how long much use you expect for the optimised code.
Single use programs are rarely worth optimising.

The likely cost
Programming/debugging time.
Delay to starting simulation
“Damage” to the program

epce




e
Changing code

Many proposed changes will turn out not be useful.

You may have to undo your changes.
At the very least keep old versions
Better to use revision control software.

Always check the results are still correct !
No point measuring performance if the results are wrong
A good test framework will help a lot

epcc




I
Damaging code

Performance changes can damage other desirable
aspects of the code.

Loss of encapsulation.

Loss of clarity

Loss of flexibility

Think about down-side of changes.

Look for alternative changes with same performance
benefit but less damage.

epce




0
Back-tracking

Just because a code change made the code faster does not
mean you have to keep it.

Some performance problems can be addressed in many
different ways.

Cache conflicts can be addressed by array padding or loop re-
ordering.

Loop re-ordering is often the cleaner solution but will give little benefit
once the arrays have been padded.

Be prepared to back-track and apply optimisations to earlier versions.
If you find a code change with good speed-up

Ask how you can persuade the compiler to make an equivalent
change.

epce




-
Key points

Optimisation tunes a code for a particular environment
Not all optimisations are portable.

Optimisation is an experimental process.

Need to think about cost/benefit of any change.

Always verify the results are correct.

epce




e
Experimental frameworks

Like any experiment, you need to keep good records.

You will be generating large numbers of different versions of the
code.
You need to know exactly what the different version were.
How you compiled them.
Did they get the correct answer.
How did they perform.
You may need to be able to re-run or reproduce your experiments
You discover a bug
A new compiler is released
A new hardware environment becomes available.
Etc.

epcc




Making things easier

Keep everything under version control (including results)

Script your tests so they are easy to run and give a clear
yes/no answer.

Write timing data into separate log-files in easily machine
readable format.

Keep notes.

epce




Types of optimisation

Compiler Optimisation
Auto Tuning
Hand Optimisation

By
50 7 | &
2 %
o
<

epcc




Compiler Optimisation

Automatic Optimisation performed by the compiler.

Compiler takes the source code you give it and tries to
find best machine code implementation for the target
hardware.

Compiler only has limited information about the target hardware

Constrained by the source code you give it. Can only make
changes allowed within the language specification.

Compiler is not intelligent but is much better at some kinds of
optimisation than a human programmer.

Compiler can afford to optimise the entire program.

epce




Auto tuning

Experiment driven automatic optimisation.

A wide range of possible implementations are run on the
target hardware to determine the fastest.

Different implementation parameters

Alternative algorithms.

May be pure run-time parameters or may generate new
source code for each experiment.

Can only look at the options coded into the auto-tuning.
Usually specific to one application or library.
Augments compiler based optimisation.

epce




Hand optimisation

Changing the source code to improve performance.

Used to augment compiler/auto-tuning, not as a
substitute.

Compiler and auto-tuning code is part of the environment you
optimise for.

epcc




Architecture trends

Optimisation is the process of tuning a code to run faster
in a particular Hardware and Software environment.

The hardware environment consists of many different
resources

FPU

Cache

Memory

/O

Any of these resources could be the limiting factor for
code performance
Which one depends on the application

epcc




CPU resources

In the early days of computing memory accesses were
essentially free.

Optimisation consisted of reducing the instruction count.

This is no longer the case, and is getting worse

CPU performance increases at approx. 80% per year (though
recently this has been due to increasing core count rather than
clock speed)

memory speed increases at approx. 7% per year
Most HPC codes/systems are memory bandwidth limited.

epce




Commercial factors

Computer design is all about balancing performance and
cost.

We know how to build faster computers than we can afford.
Cheaper technologies used where “good enough”

HPC computing is a very small market compared to
desktop/business systems.

HPC systems are often built out of components designed for a
different purpose.

Economies of scale make mainstream technology cheaper

epcc




Manufacturing trade-off example

Processors need complex manufacturing processes
E.g. many metal layers.
Expensive to manufacture

DRAM can be manufactured on a much simpler process.
Fewer metal layers
Much less expensive

DRAM and processors are manufactured as separate
components for cost reasons.
Simple DRAM process force interface to be simple too.
Separation of RAM and processor impacts performance

epcc




Types of optimisation

/\ Algorithm
Parallelism

Data structures

~ Code structure

Library calls

Compiler flags
4paCt > N
‘ EepPCC| &

Difficulty




Compiler flags

Easiest thing to change are the compiler flags

Most compilers will have good optimisation by default.
Some compiler optimisations are not always beneficial and need to
be requested explicitly.

Some need additional guidance from user (e.g. inter-file in-lining)

Some break language standards and need to be requested
explicitly
E.g. a/2 -> a*0.5 is contrary to Fortran standard but is usually safe.
Usually worthwhile to read compiler manual pages before optimising.

epcc




I
Debugging flags

Most compilers have flags to enable debugging

Traditionally debugging flags disable some optimisations

this is to make it easier to associate machine instructions with lines
of source code.

Many compilers now support optimisation and debugging
together

May have alternative flags to allow some debugging with
optimisation enabled.

epce




-
Library calls

The easiest way to make a big impact on code
performance is to re-use existing optimised code.

Libraries represent large amount of development effort
Somebody else has put in the effort so you don’t have to,

Code libraries exist for commonly used functionality (e.g.

linear algebra, FFTs etc.).

Often possible to access highly optimised versions of these
libraries.

Even if the application code does not use a standard library it is
often easy to re-write to use the standard calls.

epcc




Using libraries

Don't just use libraries blindly.

Read the documentation.
Learn what the library is capable of.

Libraries often have multiple ways of doing the same thing. You
need to understand which is best for your code.

Many modern libraries support auto-tuning.

Can run internal experiments to automatically optimise the
implementation for a given problem.

Application programmer needs to cooperate on this.

epce




e
Algorithm

The biggest performance increases typically require a
change to the underlying algorithm.

Consider changing an O(N) sort algorithm to a O(log(N)) algorithm.
This is a lot of work as the relevant code section usually needs a
complete re-write.

A warning

The complexity of an algorithm O(N), O(log(N)), O(N log(N)) etc. is
related to number of operations and is not always a reliable
indication of performance.

Pre-factor may make a “worse” algorithm perform better for the value of
N of interest.

The “worse” algorithms may have much better cache re-use

epce




Data structures

Changing the programs data structures can often give
good performance improvements

These are often global changes to the program and therefore
expensive.

Code re-writing tools can help with this.

Easier if data structures are reasonably opaque, declared once
objects, structs, F90 types, included common blocks.

As memory access is often the major performance bottleneck the
benefits can be great.

Improve cache/register utilisation.
Avoid pointer chasing

May be able to avoid memory access problems by changing code
structure in key areas instead.

epcc




Code structure

Most optimisations involve changes to code structure
Loop unrolling
Loop fusion
routine in-lining.
Often overlap with optimisations attempted by the compiler.

Often better to help the compiler to do this than perform change by
hand.

Easier to implement than data changes as more localised.

Performance impact is often also smaller unless the code fragment is a
major time consumer.

Performance improvement often at the expense of code
maintainability.
Try to keep the unoptimised version up to date as well.

epce




Parallelism

Parallel computing is usually an optimisation technique
Multiple processors are used to improve run-time
Multiple cores within a node

Can be exploited by running one MPI process per core

May be better to run fewer MPI processes and use threads (e.g.
OpenMP) to make use of the other cores.

epcc




Summary

There are many ways to optimise a program

need to select the most appropriate for the situation

doing nothing is an option
Must always weigh the benefit (faster execution) against
costs:

programmer effort

loss of maintainability

loss of portability

Performance measurement, analysis and testing are key
parts of the process.

epce




