
ARCHER Single Node
Optimisation
Introduction to performance optimisation

Slides contributed by Cray and EPCC

Overview

• Why do we optimise
• What is performance optimisation
• When do we optimise
•  The optimisation cycle
•  Trends in computer architecture
•  Types of optimisation

Why?
•  Large computer simulations are becoming common in

many scientific disciplines.
•  These often take a significant amount of time to run.

•  Sometimes they take too long.
•  There are three things that can be done

•  Change the science (compromise the research)
•  Change the computer (spend more money)
•  Change the program (this is performance optimisation)

What?
•  There are usually many different ways you can write a

program and still obtain the correct results.
• Some run faster than others.

•  Interactions with the computer hardware.
•  Interactions with other software.

• Performance optimisation is the process of making an
existing working computer program run faster in a
particular Hardware and Software environment.
•  Converting a sequential program to run in parallel is an example of

optimisation under this definition!

When?
• Performance optimisation can take large amounts of

development time.
• Some optimisations improve program speed at the cost of

making the program harder to understand (increasing the
cost of future changes)

• Some optimisations improve program speed at the cost of
making the program more specialised and less general
purpose.

•  It is always important to evaluate the relative costs and
benefits when optimising a program
•  This requires the ability to estimate potential gains in advance

Example:
•  Lattice QCD

•  Simulation of the underlying theory of particle physics.

• Requires very large amounts of computer time.
•  A single simulation can take months of supercomputer time.

• Over 90% of the runtime is in a very small number of
kernel routines
•  Almost any amount of optimisation effort expended on the kernel

routines will be justified.

How?
• Performance optimisation usually follows a cycle:

Verify results

Measure performance

Change code
Propose change
or Exit

Theory

Measuring performance
•  It is not enough to just measure overall speed

•  You need to know where the time is going.
•  There are tools to help you do this

•  They are called profiling tools.
•  They give information about:

•  Which sections of code are taking the time
•  Sometimes line by line but usually only subroutines.

•  Sometimes the type of operation
•  memory access
•  floating point calculations
•  file access

•  Make sure you understand how variable your results are
•  Are the results down to my changes or just random variation?

Input dependence
• Many codes perform differently with different input data.
• Use multiple sets of input data when measuring

performance.
• Make sure these are representative of the problems

where you want the code to run quickly.

•  Its only worth working on parts of the code that take a lot
of time.

•  Large speed-up of unimportant sections have little
impact on the overall picture.
•  Amdahl’s law is this concept applied to parallel processing.
•  Same insight applies to other forms of optimisation.

Only optimise important
sections

40%

40%

20%

90%

2X

Theory
• Optimisation is an experimental process.
• You propose reasons why a code section is slow.
• Make corresponding changes.
•  The results may surprise you

•  Need to revise the theory

• Never “optimise” without measuring the impact.

Exit ?
•  It is important to know when to stop.
• Each time you propose a code change consider:

•  The likely improvement
•  Code profile and Amdahl`s law helps here.
•  Take account of how long much use you expect for the optimised code.

Single use programs are rarely worth optimising.
•  The likely cost

•  Programming/debugging time.
•  Delay to starting simulation
•  “Damage” to the program

Changing code
• Many proposed changes will turn out not be useful.
• You may have to undo your changes.

•  At the very least keep old versions
•  Better to use revision control software.

• Always check the results are still correct !!
•  No point measuring performance if the results are wrong
•  A good test framework will help a lot

Damaging code
• Performance changes can damage other desirable

aspects of the code.
•  Loss of encapsulation.
•  Loss of clarity
•  Loss of flexibility

•  Think about down-side of changes.
•  Look for alternative changes with same performance

benefit but less damage.

Back-tracking
•  Just because a code change made the code faster does not

mean you have to keep it.
•  Some performance problems can be addressed in many

different ways.
•  Cache conflicts can be addressed by array padding or loop re-

ordering.
•  Loop re-ordering is often the cleaner solution but will give little benefit

once the arrays have been padded.
•  Be prepared to back-track and apply optimisations to earlier versions.

•  If you find a code change with good speed-up
•  Ask how you can persuade the compiler to make an equivalent

change.

Key points
• Optimisation tunes a code for a particular environment

•  Not all optimisations are portable.

• Optimisation is an experimental process.

• Need to think about cost/benefit of any change.

• Always verify the results are correct.

Experimental frameworks
•  Like any experiment, you need to keep good records.
•  You will be generating large numbers of different versions of the

code.
•  You need to know exactly what the different version were.
•  How you compiled them.
•  Did they get the correct answer.
•  How did they perform.

•  You may need to be able to re-run or reproduce your experiments
•  You discover a bug
•  A new compiler is released
•  A new hardware environment becomes available.
•  Etc.

Making things easier
• Keep everything under version control (including results)
• Script your tests so they are easy to run and give a clear

yes/no answer.
• Write timing data into separate log-files in easily machine

readable format.
• Keep notes.

• Compiler Optimisation
• Auto Tuning
• Hand Optimisation

Types of optimisation

• Automatic Optimisation performed by the compiler.
• Compiler takes the source code you give it and tries to

find best machine code implementation for the target
hardware.
•  Compiler only has limited information about the target hardware
•  Constrained by the source code you give it. Can only make

changes allowed within the language specification.
•  Compiler is not intelligent but is much better at some kinds of

optimisation than a human programmer.
•  Compiler can afford to optimise the entire program.

Compiler Optimisation

• Experiment driven automatic optimisation.
• A wide range of possible implementations are run on the

target hardware to determine the fastest.
•  Different implementation parameters
•  Alternative algorithms.

• May be pure run-time parameters or may generate new
source code for each experiment.

• Can only look at the options coded into the auto-tuning.
• Usually specific to one application or library.
• Augments compiler based optimisation.

Auto tuning

• Changing the source code to improve performance.
• Used to augment compiler/auto-tuning, not as a

substitute.
•  Compiler and auto-tuning code is part of the environment you

optimise for.

Hand optimisation

Architecture trends
• Optimisation is the process of tuning a code to run faster

in a particular Hardware and Software environment.
•  The hardware environment consists of many different

resources
•  FPU
•  Cache
•  Memory
•  I/O

• Any of these resources could be the limiting factor for
code performance
•  Which one depends on the application

CPU resources
•  In the early days of computing memory accesses were

essentially free.
•  Optimisation consisted of reducing the instruction count.

•  This is no longer the case, and is getting worse
•  CPU performance increases at approx. 80% per year (though

recently this has been due to increasing core count rather than
clock speed)

•  memory speed increases at approx. 7% per year

• Most HPC codes/systems are memory bandwidth limited.

Commercial factors
• Computer design is all about balancing performance and

cost.
•  We know how to build faster computers than we can afford.

• Cheaper technologies used where “good enough”
• HPC computing is a very small market compared to

desktop/business systems.
•  HPC systems are often built out of components designed for a

different purpose.
•  Economies of scale make mainstream technology cheaper

Manufacturing trade-off example
• Processors need complex manufacturing processes

•  E.g. many metal layers.
•  Expensive to manufacture

• DRAM can be manufactured on a much simpler process.
•  Fewer metal layers
•  Much less expensive

• DRAM and processors are manufactured as separate
components for cost reasons.
•  Simple DRAM process force interface to be simple too.
•  Separation of RAM and processor impacts performance

Types of optimisation
D

iff
ic

ul
ty

Impact

Algorithm

Code structure

Data structures

Library calls
Compiler flags

Parallelism

Compiler flags
• Easiest thing to change are the compiler flags
• Most compilers will have good optimisation by default.

•  Some compiler optimisations are not always beneficial and need to
be requested explicitly.

•  Some need additional guidance from user (e.g. inter-file in-lining)
•  Some break language standards and need to be requested

explicitly
•  E.g. a/2 -> a*0.5 is contrary to Fortran standard but is usually safe.
•  Usually worthwhile to read compiler manual pages before optimising.

Debugging flags
• Most compilers have flags to enable debugging
•  Traditionally debugging flags disable some optimisations

•  this is to make it easier to associate machine instructions with lines
of source code.

• Many compilers now support optimisation and debugging
together
•  May have alternative flags to allow some debugging with

optimisation enabled.

Library calls
•  The easiest way to make a big impact on code

performance is to re-use existing optimised code.
•  Libraries represent large amount of development effort

•  Somebody else has put in the effort so you don’t have to,
• Code libraries exist for commonly used functionality (e.g.

linear algebra, FFTs etc.).
•  Often possible to access highly optimised versions of these

libraries.
•  Even if the application code does not use a standard library it is

often easy to re-write to use the standard calls.

Using libraries
• Don’t just use libraries blindly.
• Read the documentation.

•  Learn what the library is capable of.
•  Libraries often have multiple ways of doing the same thing. You

need to understand which is best for your code.

• Many modern libraries support auto-tuning.
•  Can run internal experiments to automatically optimise the

implementation for a given problem.
•  Application programmer needs to cooperate on this.

Algorithm
•  The biggest performance increases typically require a

change to the underlying algorithm.
•  Consider changing an O(N) sort algorithm to a O(log(N)) algorithm.
•  This is a lot of work as the relevant code section usually needs a

complete re-write.
• A warning

•  The complexity of an algorithm O(N), O(log(N)), O(N log(N)) etc. is
related to number of operations and is not always a reliable
indication of performance.
•  Pre-factor may make a “worse” algorithm perform better for the value of

N of interest.
•  The “worse” algorithms may have much better cache re-use

Data structures
• Changing the programs data structures can often give

good performance improvements
•  These are often global changes to the program and therefore

expensive.
•  Code re-writing tools can help with this.
•  Easier if data structures are reasonably opaque, declared once

•  objects, structs, F90 types, included common blocks.
•  As memory access is often the major performance bottleneck the

benefits can be great.
•  Improve cache/register utilisation.
•  Avoid pointer chasing

•  May be able to avoid memory access problems by changing code
structure in key areas instead.

•  Most optimisations involve changes to code structure
•  Loop unrolling
•  Loop fusion
•  routine in-lining.

•  Often overlap with optimisations attempted by the compiler.
•  Often better to help the compiler to do this than perform change by

hand.
•  Easier to implement than data changes as more localised.

•  Performance impact is often also smaller unless the code fragment is a
major time consumer.

•  Performance improvement often at the expense of code
maintainability.
•  Try to keep the unoptimised version up to date as well.

Code structure

Parallelism
• Parallel computing is usually an optimisation technique

•  Multiple processors are used to improve run-time

• Multiple cores within a node
•  Can be exploited by running one MPI process per core
•  May be better to run fewer MPI processes and use threads (e.g.

OpenMP) to make use of the other cores.

Summary
•  There are many ways to optimise a program

•  need to select the most appropriate for the situation
•  doing nothing is an option

• Must always weigh the benefit (faster execution) against
costs:
•  programmer effort
•  loss of maintainability
•  loss of portability

• Performance measurement, analysis and testing are key
parts of the process.

