
Parallel Programming
Overview and Concepts

Outline
• Decomposition

• Geometric decomposition

• Task farm

• Pipeline

• Loop parallelism

• General parallelisation considerations

• Parallel code performance metrics and evaluation

• Parallel scaling models

Practical

Why use parallel programming?

It is harder than serial so why bother?

Why?

• Parallel programming is more difficult than it’s sequential

counterpart

• However we are reaching limitations in uniprocessor design

• Physical limitations to size and speed of a single chip

• Developing new processor technology is very expensive

• Some fundamental limits such as speed of light and size of atoms

• Parallelism is not a silver bullet

• There are many additional considerations

• Careful thought is required to take advantage of parallel machines

Performance

• A key aim is to solve problems faster

• To improve the time to solution

• Enable new a new scientific problems to be solved

• To exploit parallel computers, we need to split the program up
between different processors

• Ideally, would like program to run P times faster on P
processors

• Not all parts of program can be successfully split up

• Splitting the program up may introduce additional overheads such as
communication

Parallel tasks
• How we split a problem up in parallel is critical

1. Limit communication (especially the number of messages)

2. Balance the load so all processors are equally busy

• Tightly coupled problems require lots of interaction
between their parallel tasks

• Embarrassingly parallel problems require very little (or no)
interaction between their parallel tasks
• E.g. the image sharpening exercise

• In reality most problems sit somewhere between two
extremes

Sharpen

Decomposition

How do we split problems up to solve efficiently in parallel?

Decomposition

• One of the most challenging, but also most important,

decisions is how to split the problem up

• How you do this depends upon a number of factors

• The nature of the problem

• The amount of communication required

• Support from implementation technologies

• We are going to look at some frequently used

decompositions

CFD

Geometric decomposition

• Take advantage of the geometric properties of a problem

Geometric decomposition

• Splitting the problem up does have an associated cost

• Namely communication between processors

• Need to carefully consider granularity

• Aim to minimise communication and maximise computation

Halo swapping

• Swap data in bulk at pre-

defined intervals

• Often only need

information on the

boundaries

• Many small messages

result in far greater

overhead

• Execution time determined by slowest processor

• each processor should have (roughly) the same amount of work,

i.e. they should be load balanced

• Address by multiple partitions per processor

• Additional techniques such as work stealing available

Load imbalance
Fractal

Task farm (master worker)
• Split the problem up into distinct, independent, tasks

• Master process sends task to a worker

• Worker process sends results back to the master

• The number of tasks is often much greater than the

number of workers and tasks get allocated to idle workers

Master

Worker 3 Worker 2 Worker 1 Worker n …

Fractal

Task farm considerations

• Communication is between the master and the workers
• Communication between the workers can complicate things

• The master process can become a bottleneck
• Workers are idle waiting for the master to send them a task or

acknowledge receipt of results

• Potential solution: implement work stealing

• Resilience – what happens if a worker stops responding?
• Master could maintain a list of tasks and redistribute that work’s

work

MapReduce
• Three types of worker

 Mapper (user supplies this code)
 Take a (local) list of key-value pairs, and for each pair, return another (intermediate) key-value pair

 Grouper (part of the run-time), can be done by the master
 Group by (intermediate) key on local disk

 Reducer (user suppliers this code)
 One reducer for each (intermediate) key

 Takes the (intermediate) key-value pairs from all relevant disks, performs a reduction operation and
returns another (usually) shorter list of (final) key-value pairs

MapReduce

function mapper(String name, String document):

 for each word w in document: emit (w, 1)

function reducer(String word, Iterator partialCounts):

 sum = 0

 for each pc in partialCounts: sum += ParseInt(pc)

 emit (word, sum)

hello test this is a test hello

 (hello,1), (test,1), (this,1),

(is,1), (a,1), (test,1), (hello,1)

(hello,1,1), (test,1,1),

(this,1), (is,1), (a,1)

(hello,2), (test,2),

(this,1), (is,1), (a,1)

grouper

Pipeline
• A problem involves operating on many pieces of data in

turn. The overall calculation can be viewed as data

flowing through a sequence of stages and being operated

on at each stage.

• Each stage runs on a processor, each processor

communicates with the processor holding the next stage

• One way flow of data

S
ta

g
e

1

S
ta

g
e

2

S
ta

g
e

3

S
ta

g
e

4

S
ta

g
e

5

Data Result

Examples of pipeline

• CPU architectures
• Fetch, decode, execute, write back

• Intel Pentium 4 had a 20 stage pipeline

• Unix shell
• i.e. cat datafile | grep “energy” | awk ‘{print $2, $3}’

• Graphics/GPU pipeline

• A generalisation of pipeline (a workflow, or dataflow) is
becoming more and more relevant to large, distributed
scientific workflows

• Can combine the pipeline with other decompositions

Loop parallelism
• Serial programs can often be dominated by

computationally intensive loops.

• Can be applied incrementally, in small steps based upon
a working code
• This makes the decomposition very useful

• Often large restructuring of the code is not required

• Tends to work best with small scale parallelism
• Not suited to all architectures

• Not suited to all loops

• If the runtime is not dominated by loops, or some loops
can not be parallelised then these factors can dominate
(Amdahl’s law.)

OpenMP Sharpen

How to parallelise loops
1. Find the bottlenecks

• Concentrate on computationally intensive loops

• Variety of performance profiling tools exist

2. Eliminate loop-carried dependencies

• Loop iterations should be nearly independent

• Any shared data should be protected

3. Parallelise the loops

• Some technologies have mature support for this

• Can often parallelise one loop at a time and test

4. Optimise the loop schedule

• Determines how the loop iterations are distributed amongst the
processors

• Can require some experimentation to find the best choice

Performance metrics

How is my parallel code performing and scaling?

Performance metrics
• A typical program has two categories of components

• Inherently sequential sections: can’t be run in parallel

• Potentially parallel sections

• Speed up

• typically S(N,P) < P

• Parallel efficiency

• typically E(N,P) < 1

• Serial efficiency

• typically E(N) <= 1

Where N is the size of the problem and P the number of processors

The serial section of code
“The performance improvement to be gained by parallelisation is limited

by the proportion of the code which is serial”

Gene Amdahl, 1967

• A fraction, a, is completely serial

• Parallel runtime

• Assuming parallel part is 100% efficient

• Parallel speedup

• We are fundamentally limited by the serial fraction

• For a = 0, S = P as expected (i.e. efficiency = 100%)

• Otherwise, speedup limited by 1/ a for any P

• For a = 0.1; 1/0.1 = 10 therefore 10 times maximum speed up

• For a = 0.1; S(N, 16) = 6.4, S(N, 1024) = 9.9

Amdahl’s law
Sharpen & CFD

• We need larger problems for larger numbers of CPUs

• Whilst we are still limited by the serial fraction, it becomes
less important

Gustafson’s Law

Gustafson’s Law

• If you can increase the amount of work done by each
process/task then the serial component will not dominate
• Increase the problem size to maintain scaling

• This can be in terms of adding extra complexity or increasing the
overall problem size.

• 𝑆 𝑁 ∗ 𝑃, 𝑃 = 𝑃 − ∝ 𝑃 − 1

• For instance, ∝=0.1
• S(16*N, 16) = 14.5

• S(1024*N, 1024) = 921.7

CFD

Due to the scaling of N,
effectively the serial
fraction becomes ∝/P

Scaling

• Scaling is how the performance of a parallel application

changes as the number of processors is increased

• There are two different types of scaling:

• Strong Scaling – total problem size stays the same as the number

of processors increases

• Weak Scaling – the problem size increases at the same rate as the

number of processors, keeping the amount of work per processor

the same

• Strong scaling is generally more useful but more difficult

to achieve than weak scaling

Strong scaling

0

50

100

150

200

250

300

0 50 100 150 200 250 300

S
p

e
e

d
-u

p

No of processors

Speed-up vs No of processors

linear

actual

Strong scaling

0

5

10

15

20

25

1 n

Example runtime vs No. of processors

R
u

n
ti

m
e

(s
)

No. of processors

Summary
• There are a variety of considerations when parallelising code

• Scaling is important, as the more a code scales the larger a

machine it can take advantage of

• Metrics exist to give you an indication of how well your code

performs and scales

• A variety of patterns exist that can provide well known

approaches to parallelising a serial problem

• You will see examples of some of these during the practical sessions

