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Practical 



Why use parallel programming? 

It is harder than serial so why bother? 



Why? 

• Parallel programming is more difficult than it’s sequential 

counterpart 

 

• However we are reaching limitations in uniprocessor design 

• Physical limitations to size and speed of a single chip 

• Developing new processor technology is very expensive 

• Some fundamental limits such as speed of light and size of atoms 

 

• Parallelism is not a silver bullet 

• There are many additional considerations 

• Careful thought is required to take advantage of parallel machines 

 



Performance 

• A key aim is to solve problems faster 

• To improve the time to solution 

• Enable new a new scientific problems to be solved 

 

• To exploit parallel computers, we need to split the program up 
between different processors 

 

• Ideally, would like program to run P times faster on P 
processors 

• Not all parts of program can be successfully split up 

• Splitting the program up may introduce additional overheads such as 
communication 

 



Parallel tasks 
• How we split a problem up in parallel is critical 

1. Limit communication (especially the number of messages) 

2. Balance the load so all processors are equally busy 

 

• Tightly coupled problems require lots of interaction 
between their parallel tasks 

• Embarrassingly parallel problems require very little (or no) 
interaction between their parallel tasks 
• E.g. the image sharpening exercise 

 

• In reality most problems sit somewhere between two 
extremes 

 

Sharpen 



Decomposition 

How do we split problems up to solve efficiently in parallel? 



Decomposition 

• One of the most challenging, but also most important, 

decisions is how to split the problem up 

 

• How you do this depends upon a number of factors 

• The nature of the problem 

• The amount of communication required 

• Support from implementation technologies 

 

• We are going to look at some frequently used 

decompositions 

 

CFD 



Geometric decomposition 

• Take advantage of the geometric properties of a problem 

 



Geometric decomposition 

• Splitting the problem up does have an associated cost 

• Namely communication between processors  

• Need to carefully consider granularity 

• Aim to minimise communication and maximise computation 

 



Halo swapping 

• Swap data in bulk at pre-

defined intervals 

 

• Often only need 

information on the 

boundaries 

 

• Many small messages 

result in far greater 

overhead 

 



• Execution time determined by slowest processor 

• each processor should have (roughly) the same amount of work, 

i.e. they should be load balanced 

 

 

 

 

 

 

• Address by multiple partitions per processor 

• Additional techniques such as work stealing available 

Load imbalance 
Fractal 



Task farm (master worker) 
• Split the problem up into distinct, independent, tasks 

 

 

 

 

 

• Master process sends task to a worker 

• Worker process sends results back to the master 

• The number of tasks is often much greater than the 

number of workers and tasks get allocated to idle workers 

 

Master 

Worker 3 Worker 2 Worker 1 Worker n … 

Fractal 



Task farm considerations 

• Communication is between the master and the workers 
• Communication between the workers can complicate things 

 

• The master process can become a bottleneck 
• Workers are idle waiting for the master to send them a task or 

acknowledge receipt of results 

• Potential solution: implement work stealing 

 

• Resilience – what happens if a worker stops responding? 
• Master could maintain a list of tasks and redistribute that work’s 

work 

 



MapReduce 
• Three types of worker 

 Mapper (user supplies this code) 
 Take a (local) list of key-value pairs, and for each pair, return another (intermediate) key-value pair 

 

 Grouper (part of the run-time), can be done by the master 
 Group by (intermediate) key on local disk 

 

 Reducer (user suppliers this code) 
 One reducer for each (intermediate) key 

 Takes the (intermediate) key-value pairs from all relevant disks, performs a reduction operation and 
returns another (usually) shorter list of (final) key-value pairs  

 



MapReduce 

function mapper(String name, String document): 

    for each word w in document: emit (w, 1)  

 

 

 

 

 

function reducer(String word, Iterator partialCounts):  

    sum = 0  

    for each pc in partialCounts: sum += ParseInt(pc)  

    emit (word, sum) 

 

hello test this is a test hello 

 (hello,1), (test,1), (this,1), 

(is,1), (a,1), (test,1), (hello,1) 

 

(hello,1,1), (test,1,1), 

(this,1), (is,1), (a,1) 

(hello,2), (test,2), 

(this,1), (is,1), (a,1) 

grouper 



Pipeline 
• A problem involves operating on many pieces of data in 

turn. The overall calculation can be viewed as data 

flowing through a sequence of stages and being operated 

on at each stage. 

 

 

 

 

• Each stage runs on a processor, each processor 

communicates with the processor holding the next stage 

• One way flow of data 
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Examples of pipeline 

• CPU architectures 
• Fetch, decode, execute, write back 

• Intel Pentium 4 had a 20 stage pipeline 

• Unix shell 
• i.e. cat datafile | grep “energy” | awk ‘{print $2, $3}’ 

• Graphics/GPU pipeline 

 

• A generalisation of pipeline (a workflow, or dataflow) is 
becoming more and more relevant to large, distributed 
scientific workflows 

• Can combine the pipeline with other decompositions 

 



Loop parallelism 
• Serial programs can often be dominated by 

computationally intensive loops. 

• Can be applied incrementally, in small steps based upon 
a working code 
• This makes the decomposition very useful 

• Often large restructuring of the code is not required 

• Tends to work best with small scale parallelism 
• Not suited to all architectures 

• Not suited to all loops 

• If the runtime is not dominated by loops, or some loops 
can not be parallelised then these factors can dominate 
(Amdahl’s law.) 

 

OpenMP Sharpen 



How to parallelise loops 
1. Find the bottlenecks 

• Concentrate on computationally intensive loops 

• Variety of performance profiling tools exist 

2. Eliminate loop-carried dependencies 

• Loop iterations should be nearly independent 

• Any shared data should be protected 

3. Parallelise the loops 

• Some technologies have mature support for this 

• Can often parallelise one loop at a time and test 

4. Optimise the loop schedule 

• Determines how the loop iterations are distributed amongst the 
processors 

• Can require some experimentation to find the best choice 

 



Performance metrics 

How is my parallel code performing and scaling? 



Performance metrics 
• A typical program has two categories of components 

• Inherently sequential sections: can’t be run in parallel 

• Potentially parallel sections 

 

• Speed up 

• typically S(N,P) < P 

 

• Parallel efficiency 

• typically E(N,P) < 1 

 

• Serial efficiency 

• typically E(N) <= 1 

 
Where N is the size of the problem and P the number of processors 

 



The serial section of code 
“The performance improvement to be gained by parallelisation is limited 

by the proportion of the code which is serial” 

Gene Amdahl, 1967 

 



• A fraction, a, is completely serial 

 

• Parallel runtime 

• Assuming parallel part is 100% efficient 

 

• Parallel speedup 

 

• We are fundamentally limited by the serial fraction 

• For a = 0, S = P as expected (i.e. efficiency = 100%) 

• Otherwise, speedup limited by 1/ a for any P 

• For a = 0.1; 1/0.1 = 10 therefore 10 times maximum speed up 

• For a = 0.1; S(N, 16) = 6.4, S(N, 1024) = 9.9 

Amdahl’s law 
Sharpen & CFD 



• We need larger problems for larger numbers of CPUs 

 

 

 

 

 

 

 

 

• Whilst we are still limited by the serial fraction, it becomes 
less important 

Gustafson’s Law 



Gustafson’s Law 

• If you can increase the amount of work done by each 
process/task then the serial component will not dominate 
• Increase the problem size to maintain scaling 

• This can be in terms of adding extra complexity or increasing the 
overall problem size. 

 

• 𝑆 𝑁 ∗ 𝑃, 𝑃 = 𝑃 − ∝ 𝑃 − 1  

 

• For instance, ∝=0.1 
• S(16*N, 16) = 14.5 

• S(1024*N, 1024) = 921.7 

CFD 

Due to the scaling of N, 
effectively the serial 
fraction becomes ∝/P 



Scaling 

• Scaling is how the performance of a parallel application 

changes as the number of processors is increased 

 

• There are two different types of scaling: 

• Strong Scaling – total problem size stays the same as the number 

of processors increases 

• Weak Scaling – the problem size increases at the same rate as the 

number of processors, keeping the amount of work per processor 

the same 

• Strong scaling is generally more useful but more difficult 

to achieve than weak scaling 

 



Strong scaling 
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Strong scaling 
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Summary 
• There are a variety of considerations when parallelising code 

 

• Scaling is important, as the more a code scales the larger a 

machine it can take advantage of 

 

• Metrics exist to give you an indication of how well your code 

performs and scales 

 

• A variety of patterns exist that can provide well known 

approaches to parallelising a serial problem 

• You will see examples of some of these during the practical sessions 

 


