

Introduction to

OpenMP

Lecture 5: Synchronisation

2

Why is it required?

Recall:

• Need to synchronise actions on shared variables.

• Need to ensure correct ordering of reads and writes.

• Need to protect updates to shared variables (not atomic by default)

http://www.epcc.ed.ac.uk/

3

BARRIER directive

• No thread can proceed past a barrier until all the other threads have

arrived.

• Note that there is an implicit barrier at the end of DO/FOR, SECTIONS

and SINGLE directives.

• Syntax:

Fortran: !$OMP BARRIER

C/C++: #pragma omp barrier

• Either all threads or none must encounter the barrier: otherwise

DEADLOCK!!

http://www.epcc.ed.ac.uk/

4

BARRIER directive (cont)

Example:

!$OMP PARALLEL PRIVATE(I,MYID,NEIGHB)

 myid = omp_get_thread_num()

 neighb = myid - 1

 if (myid.eq.0) neighb = omp_get_num_threads()-1

 ...

 a(myid) = a(myid)*3.5

!$OMP BARRIER

 b(myid) = a(neighb) + c

 ...

!$OMP END PARALLEL

• Barrier required to force synchronisation on a

http://www.epcc.ed.ac.uk/

5

Critical sections

• A critical section is a block of code which can be executed by only one

thread at a time.

• Can be used to protect updates to shared variables.

• The CRITICAL directive allows critical sections to be named.

• If one thread is in a critical section with a given name, no other thread

may be in a critical section with the same name (though they can be in

critical sections with other names).

http://www.epcc.ed.ac.uk/

6

CRITICAL directive

• Syntax:

Fortran: !$OMP CRITICAL [(name)]

 block

 !$OMP END CRITICAL [(name)]

C/C++: #pragma omp critical [(name)]

 structured block

• In Fortran, the names on the directive pair must match.

• If the name is omitted, a null name is assumed (all unnamed critical

sections effectively have the same null name).

http://www.epcc.ed.ac.uk/

7

CRITICAL directive (cont)

Example: pushing and popping a task stack

!$OMP PARALLEL SHARED(STACK),PRIVATE(INEXT,INEW)

 ...

!$OMP CRITICAL (STACKPROT)

 inext = getnext(stack)

!$OMP END CRITICAL (STACKPROT)

 call work(inext,inew)

!$OMP CRITICAL (STACKPROT)

 if (inew .gt. 0) call putnew(inew,stack)

!$OMP END CRITICAL (STACKPROT)

 ...

!$OMP END PARALLEL

http://www.epcc.ed.ac.uk/

8

Lock routines

• Occasionally we may require more flexibility than is provided by

CRITICAL directive.

• A lock is a special variable that may be set by a thread. No other thread

may set the lock until the thread which set the lock has unset it.

• Setting a lock can either be blocking or non-blocking.

• A lock must be initialised before it is used, and may be destroyed when it

is not longer required.

• Lock variables should not be used for any other purpose.

http://www.epcc.ed.ac.uk/

9

Lock routines - syntax

Fortran:

USE OMP_LIB

SUBROUTINE OMP_INIT_LOCK(OMP_LOCK_KIND var)

SUBROUTINE OMP_SET_LOCK(OMP_LOCK_KIND var)

LOGICAL FUNCTION OMP_TEST_LOCK(OMP_LOCK_KIND var)

SUBROUTINE OMP_UNSET_LOCK(OMP_LOCK_KIND var)

SUBROUTINE OMP_DESTROY_LOCK(OMP_LOCK_KIND var)

var should be an INTEGER of the same size as addresses (e.g. INTEGER*8 on a

64-bit machine)

OMP_LIB defines OMP_LOCK_KIND

http://www.epcc.ed.ac.uk/

10

Lock routines - syntax

C/C++:

#include <omp.h>

 void omp_init_lock(omp_lock_t *lock);

 void omp_set_lock(omp_lock_t *lock);

 int omp_test_lock(omp_lock_t *lock);

 void omp_unset_lock(omp_lock_t *lock);

 void omp_destroy_lock(omp_lock_t *lock);

There are also nestable lock routines which allow the same thread to set a

lock multiple times before unsetting it the same number of times.

http://www.epcc.ed.ac.uk/

11

Lock example

Example (compute degree of each vertex in a graph):

for (i=0; i<nvertexes; i++){

 omp_init_lock(lockvar[i]);

}

#pragma omp parallel for

 for (j=0; j<nedges; j++){

 omp_set_lock(lockvar[edge[j].vertex1]);

 degree[edge[j].vertex1]++;

 omp_unset_lock(lockvar[edge[j].vertex1]);

 omp_set_lock(lockvar[edge[j].vertex2]);

 degree[edge[j].vertex2]++;

 omp_unset_lock(lockvar[edge[j].vertex2]);

 }

http://www.epcc.ed.ac.uk/

12

Exercise

Molecular dynamics

• The code supplied is a simple molecular dynamics simulation of the

melting of solid argon.

• Computation is dominated by the calculation of force pairs in subroutine

forces.

• Parallelise this routine using a DO/FOR directive and critical sections.

– Watch out for PRIVATE and REDUCTION variables.

– Choose a suitable loop schedule

• Extra exercise: can you improve the performance by using locks, or by

using a reduction array (C programmers will need to implement this “by

hand”).

http://www.epcc.ed.ac.uk/

