
Compilers
Algorithms to executables

Outline

• What does compiling mean?

• Libraries

• Anatomy of a compiler

• Compiler “optimisations”

• Can the compiler parallelise my code?

• Why are there differences in compilers?

Compiling

What does compiling mean?

Compiling Overview

• HPC programs are usually written in a high-level, human-

readable language.

• Almost always Fortran or C (99% of all HPC applications)

• Occasionally C++; rarely something else

• Processors execute machine code (via instruction sets)

• Compilers convert high-level source code into machine

code.

• Also incorporate functionality from external libraries

• Usually try to optimise the code produced so that it runs as fast as

possible on the processors

Libraries

• Libraries provide functionality that is common across
multiple programs
• Low level – e.g. filesystem access. Usually not interesting to users

• Optimised numerical operations – e.g. linear algebra, Fourier
transformations

• Communications and parallelism – e.g. Message Passing Interface
(MPI), OpenMP

• The compiler combines the code in these libraries with the
code generated from the user’s program to produce the
final executable.
• Linking at run time is also possible – known as dynamic linking (or

shared libraries).

Anatomy of a compiler

How does it actually work?

Compiler Flow

Source
Code

Machine
Code

Full
Application

Object
Files (*.o)

Executable
Binary File

Compile Link

Source Code
Files Libraries

Compile Stage

• Transforms high level source to machine code

• Produces object files – usually one object file per source file

• Actually consists of a number of sub-stages

• Details are beyond this course

• Optimisations are performed at this stage

• More on optimisations later

Link Stage

• Object files are combined (linked) to produce the actual

application

• Application is an executable binary file

• Any library code required by the application is also linked

at this stage

• Two forms of linking:

• Static – All code is combined into a single executable file

• Dynamic – Code from libraries is not combined into executable file,

instead this code is dynamically include when the executable is run

Compiler optimisations

What do they do? When should/shouldn’t I use them?

Optimisation

• Compiler will try to alter produced code so it runs more

quickly

• This can be done at a number of levels and can include the

reordering of operations

• Note: although these are called optimisations, this is a

misnomer

• Resulting code is never optimal

• Seldom any iterative process

• Seldom any attempt to quantify effect of any transformations

• Usually a predetermined sequence of transformations that is known

to produce performance gains for some codes.

Optimisation strategies

• Loop index reordering (to match memory layout)

• Loop unrolling

• Use of fast mathematical operators

• Function inlining (avoiding a function call)

• Operation reordering to allow for cache reuse

When to use optimisation

• Simple answer: always

• You should always use the performance gains given by

optimisation

• If you are debugging then you usually switch optimisation

off to ensure that the statements are being executed in

the order you specified

• If you suspect that compiler optimisations are causing a

problem you can turn them off gradually

• All good compilers allow the specification of a range of optimisation

levels so you can turn it off gradually

Compilers and parallelisation

Can compilers parallelise my code?

Compiler parallelisation

• Compilers can produce parallel (or vector) instructions

• Makes use of the SIMD instructions on the core’s floating point unit.

• However, they cannot produce the general, high-level

parallelism required for scaling on multiple cores

• Compilers do not have the holistic view required to produce this

level of parallism

• Data parallelism is usually easier to produce automatically than

task parallelism

• Attempts have been made to automate this but with limited success

so far.

Different compilers

Why are there differences between compilers?

Standards and implementations

• Although standards exist they cannot cover all cases and

contain ambiguities

• When the standard is not clear then it is up to the

compiler architect to select the behaviour

• Differences exist between compiler implementations

