
CFD example 
Regular domain decomposition 



Fluid Dynamics 

• The study of the mechanics of fluid flow, liquids and gases in 

motion. 

• Commonly requires HPC. 

• Continuous systems typically described by partial differential 

equations. 

• For a computer to simulate these systems, these equations must 

be discretised onto a grid. 

• One such discretisation approach is the finite difference method. 

• This method states that the value at any point in the grid is some 

combination of the neighbouring points 



The Problem 

• Determining the flow pattern of a fluid in a cavity 

– a square box 

– inlet on one side 

– outlet on the other 

 

 

 

 

 

 

 

• For simplicity, assuming zero viscosity. 

 

 

 

 

 

 

 

 

 

 

The Cavity 



The Maths 

• In two dimensions, easiest to work with the stream function 

• At zero viscosity,     satisfies: 

 

 

• With finite difference form: 

 

 

• Jacobi Method can be used to find solutions: 

• With boundary values fixed, stream function can be calculated for each 
point in the grid by averaging the value at that point with its four nearest 
neighbours. 

• Process continues until the algorithm converges on a solution which 
stays unchanged by the averaging. 

 

 



The Maths 

• In order to obtain the flow pattern of the fluid in the cavity we want to 

compute the velocity field: 

• The     and     components are related to the stream function by: 

 

 

 

 

 

• General approach is therefore: 

• Calculate the stream function. 

• Use this to calculate the two dimensions of the velocity. 

 

 



Parallel Programming – Grids 

• Both stages involve calculating the value at each grid point by combining it with 

the value of its neighbours. 

• Same amount of work needed to calculate each grid point – ideal for the 

regular domain decomposition approach. 

• Grid is broken up into smaller grids for 

      each processor. 



Parallel Programming – Halo Swapping 

• Points on the edge of a grid present a challenge. Required data is 

shipped to a remote processor. Processes must therefore communicate.  

• Solution is for processor grid to have a boundary layer on adjoining sides. 

• Layer is not writable by the local process. 

• Updated by another process which in turn will have a boundary updated 

by the local process. 

• Layer is generally known as a halo and the inter-process communication 

which ensures their data is correct and up to date is a halo swap. 

 



Characterising Performance 

• Speed up (S) is how much faster the parallel version runs compared to a 

non-parallel version. 

• Efficiency (E) is how effectively the available processing power is being 

used. 

 

 

• Where: 

•        number of processors 

•        time taken on 1 processor 

•        time taken on N processors 
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Compiler Implementation and Platform 
• Three compilers on ARCHER: Cray, Intel and GNU. 

• Cray and Intel: more optimisations on by default, likely to give more performance out-of-the-

box. 

• ARCHER is a Cray system using Intel processors. Cray compiler tuned for the platform, 

Intel compiler tuned for the hardware. 

 

 

 

 

 

 

 

 

• GNU compiler likely to require additional compiler options... 
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Compiler Optimisation Options 

• Flags for the compiler. Can be set on the command line or in the 

Makefile. 

• Standard levels: 

• O3 Aggressive 

• O2 Suggested 

• O Conservative 

• O0 Off (for debugging) 

• Finer tuning available. Details in compiler man pages. 

• Higher levels aren’t always better. Increased code size from some 

optimisations may negatively impact cache interactions. 

• Can increase compilation time. 
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Hyper-Threading 

• Intel technology – designed to increase performance using simultaneous 

multi-threading (SMT) techniques. 

• Presented as one additional logical core per physical one on the system. 

• Each ARCHER node therefore reports a total of 48 available processors 

(can be confirmed by checking /proc/cpuinfo). 

• Must be explicitly requested with the “-j 2” option: 

 
      #PBS -l select=1 

aprun -n 48 -j 2 ./myMPIProgram 

 

• Hyper-Threading doubles the number of available parallel units per node 

at no additional resource cost. 

• However, performance effects are highly dependent on the application… 
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Hyper-Threading Performance 

 

 

 

 

 

 

 

 

• Can have a positive or negative effect on run times. 

• Hyper-Threading is a bad idea for the CFD problem. 

• Experimentation is key to determining if this technique would be suitable 

for your code. 
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Process Placement 

• ARCHER is a NUMA system – processors access different regions of 

memory at different speeds. 

• Compute nodes have two NUMA regions – one for each CPU. Hence 12 

cores per region. 

• It may be desirable to control which NUMA regions processes are 

assigned to. 

• For example, with hyrbid MPI and OpenMP jobs, it is suggested that 

processes are placed such that shared-memory threads in the same 

team access the same local memory. 

• Can be controlled with aprun flags such as: 

• -N [parallel processes per node] 

• -S [parallel processes per NUMA region] 

• -d [threads per parallel process] 
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Parallel Scaling – Number of Processors 

• Addition of parallel resources subject to diminishing returns. 

• Depends on scalability of underlying algorithms. 

• Any sources of inefficiency are compounded at higher numbers of 

processes. 

• In the CFD example, run time can become dominated by MPI 

communications rather than actual processing work. 
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CFD Code Iterations: 10,000 Scale Factor: 70 

MPI procs Time Speedup Efficiency 

1 331.34 1.00 1.00 

2 180.30 1.84 0.92 

4 132.16 2.51 0.63 

8 121.23 2.73 0.34 

16 89.02 3.72 0.23 

24 58.70 5.64 0.24 
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Parallel Scaling – Problem Size 

• Problem scale affects memory interactions – notably cache accesses. 

• Additional processors provide additional cache space. 

• Can lead to more, or even all, of a program’s working set being available 

at the cache level. 

• Configurations that achieve this will show a sudden efficiency “spike”. 

 

 

 

 

• 2x the number of MPI processes gives ~9.8x the speed up. 
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CFD Code Iterations: 10000 Scale Factor: 70 

MPI procs Time Speedup Efficiency 

1 331.34 1.00 1.00 

48 23.27 14.24 0.30 

96 2.37 139.61 1.45 



0

100

200

300

400

500

600

700

0 100 200 300 400 500

S
p

e
e

d
u
p

 

MPI Processes 

CFD Speedup on ARCHER  

Ideal Parallel Speedup

ScaleFactor 10

ScaleFactor 20

ScaleFactor 50

ScaleFactor 70

ScaleFactor 100
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MPI Processes 

CFD Speedup on HECToR  

Ideal Parallel Speedup

ScaleFactor 10

ScaleFactor 20

ScaleFactor 50

ScaleFactor 70

ScaleFactor 100



ARCHER-ScaleFactor 10 ARCHER-ScaleFactor 20 
MPI procs Time Speedup Efficiency MPI procs Time Speedup Efficiency 

1 2.91 1.00 1.00 1 11.92 1.00 1.00 
2 1.52 1.91 0.96 2 6.21 1.92 0.96 
4 0.84 3.47 0.87 4 3.38 3.52 0.88 
8 0.47 6.22 0.78 8 1.86 6.41 0.80 

16 0.20 14.46 0.90 16 1.00 11.91 0.74 
24 0.15 19.92 0.83 24 0.68 17.52 0.73 
32 0.15 19.45 0.61 32 0.57 21.03 0.66 
48 0.12 23.90 0.50 48 0.37 31.95 0.67 
80 0.11 25.63 0.32 80 0.25 48.43 0.61 
96 0.10 28.95 0.30 96 0.22 53.17 0.55 

120 0.15 19.78 0.16 120 0.20 59.86 0.50 
160 0.10 28.36 0.18 160 0.18 67.90 0.42 
240 0.08 35.14 0.15 240 0.16 76.77 0.32 
480 0.08 35.87 0.07 480 0.16 75.94 0.16 

HECToR-ScaleFactor 10 HECToR-ScaleFactor 20 
MPI procs Time Speedup Efficiency MPI procs Time Speedup Efficiency 

1 8.91 1.00 1.00 1 48.42 1.00 1.00 
2 8.01 1.11 0.56 2 44.30 1.09 0.55 
4 2.77 3.21 0.80 4 30.68 1.58 0.39 
8 1.12 7.99 1.00 8 11.97 4.04 0.51 

16 0.61 14.56 0.91 16 3.34 14.49 0.91 
24 0.46 19.16 0.80 24 1.71 28.27 1.18 
32 0.37 24.28 0.76 32 1.29 37.59 1.17 
48 0.29 31.00 0.65 48 0.89 54.28 1.13 
80 0.22 39.80 0.50 80 0.62 78.63 0.98 
96 0.21 43.06 0.45 96 0.55 88.33 0.92 

120 0.19 46.47 0.39 120 0.48 100.57 0.84 
160 0.17 51.25 0.32 160 0.41 118.94 0.74 
240 0.16 54.58 0.23 240 0.34 143.04 0.60 
480 0.15 59.81 0.12 480 0.28 175.50 0.37 



ARCHER-ScaleFactor 100 ARCHER-ScaleFactor 150 
MPI procs Time Speedup Efficiency MPI procs Time Speedup Efficiency 

1 694.66 1.00 1.00 1 1577.00 1.00 1.00 
2 378.47 1.84 0.92 2 856.87 1.84 0.92 
4 272.62 2.55 0.64 4 617.34 2.55 0.64 

8 250.92 2.77 0.35 8 569.49 2.77 0.35 
16 184.39 3.77 0.24 16 423.34 3.73 0.23 
24 121.45 5.72 0.24 24 280.15 5.63 0.23 
32 88.64 7.84 0.24 32 207.53 7.60 0.24 
48 56.98 12.19 0.25 48 134.89 11.69 0.24 
80 31.66 21.94 0.27 80 77.95 20.23 0.25 

96 25.26 27.50 0.29 96 69.59 22.66 0.24 
120 13.89 50.02 0.42 120 53.61 29.42 0.25 
160 4.68 148.34 0.93 160 37.43 42.14 0.26 
240 1.83 379.89 1.58 240 19.89 79.30 0.33 
480 1.07 648.81 1.35 480 4.96 317.79 0.66 

HECToR-ScaleFactor 100 HECToR-ScaleFactor 150 
MPI procs Time Speedup Efficiency MPI procs Time Speedup Efficiency 

1 1229.85 1.00 1.00 1 2794.46 1.00 1.00 
2 1135.95 1.08 0.54 2 2545.46 1.10 0.55 
4 810.08 1.52 0.38 4 1823.64 1.53 0.38 

8 803.56 1.53 0.19 8 1803.73 1.55 0.19 
16 404.02 3.04 0.19 16 903.92 3.09 0.19 
24 270.39 4.55 0.19 24 604.05 4.63 0.19 
32 203.32 6.05 0.19 32 454.35 6.15 0.19 
48 135.61 9.07 0.19 48 304.80 9.17 0.19 

80 80.72 15.24 0.19 80 183.54 15.23 0.19 
96 66.10 18.61 0.19 96 152.96 18.27 0.19 

120 50.12 24.54 0.20 120 122.20 22.87 0.19 
160 31.63 38.88 0.24 160 91.26 30.62 0.19 
240 8.23 149.44 0.62 240 58.37 47.87 0.20 
480 3.19 385.72 0.80 480 11.20 249.48 0.52 


