
CFD example
Regular domain decomposition

Fluid Dynamics

• The study of the mechanics of fluid flow, liquids and gases in

motion.

• Commonly requires HPC.

• Continuous systems typically described by partial differential

equations.

• For a computer to simulate these systems, these equations must

be discretised onto a grid.

• One such discretisation approach is the finite difference method.

• This method states that the value at any point in the grid is some

combination of the neighbouring points

The Problem

• Determining the flow pattern of a fluid in a cavity

– a square box

– inlet on one side

– outlet on the other

• For simplicity, assuming zero viscosity.

The Cavity

The Maths

• In two dimensions, easiest to work with the stream function

• At zero viscosity, satisfies:

• With finite difference form:

• Jacobi Method can be used to find solutions:

• With boundary values fixed, stream function can be calculated for each
point in the grid by averaging the value at that point with its four nearest
neighbours.

• Process continues until the algorithm converges on a solution which
stays unchanged by the averaging.

The Maths

• In order to obtain the flow pattern of the fluid in the cavity we want to

compute the velocity field:

• The and components are related to the stream function by:

• General approach is therefore:

• Calculate the stream function.

• Use this to calculate the two dimensions of the velocity.

Parallel Programming – Grids

• Both stages involve calculating the value at each grid point by combining it with

the value of its neighbours.

• Same amount of work needed to calculate each grid point – ideal for the

regular domain decomposition approach.

• Grid is broken up into smaller grids for

 each processor.

Parallel Programming – Halo Swapping

• Points on the edge of a grid present a challenge. Required data is

shipped to a remote processor. Processes must therefore communicate.

• Solution is for processor grid to have a boundary layer on adjoining sides.

• Layer is not writable by the local process.

• Updated by another process which in turn will have a boundary updated

by the local process.

• Layer is generally known as a halo and the inter-process communication

which ensures their data is correct and up to date is a halo swap.

Characterising Performance

• Speed up (S) is how much faster the parallel version runs compared to a

non-parallel version.

• Efficiency (E) is how effectively the available processing power is being

used.

• Where:

• number of processors

• time taken on 1 processor

• time taken on N processors

9

Compiler Implementation and Platform
• Three compilers on ARCHER: Cray, Intel and GNU.

• Cray and Intel: more optimisations on by default, likely to give more performance out-of-the-

box.

• ARCHER is a Cray system using Intel processors. Cray compiler tuned for the platform,

Intel compiler tuned for the hardware.

• GNU compiler likely to require additional compiler options...

20/01/2014

0

10

20

30

40

50

60

70

1 2 4 8 16 24

R
u

n
 T

im
e

 (
s)

MPI Processes

CRAY

INTEL

GNU

10

Compiler Optimisation Options

• Flags for the compiler. Can be set on the command line or in the

Makefile.

• Standard levels:

• O3 Aggressive

• O2 Suggested

• O Conservative

• O0 Off (for debugging)

• Finer tuning available. Details in compiler man pages.

• Higher levels aren’t always better. Increased code size from some

optimisations may negatively impact cache interactions.

• Can increase compilation time.

20/01/2014

11

Hyper-Threading

• Intel technology – designed to increase performance using simultaneous

multi-threading (SMT) techniques.

• Presented as one additional logical core per physical one on the system.

• Each ARCHER node therefore reports a total of 48 available processors

(can be confirmed by checking /proc/cpuinfo).

• Must be explicitly requested with the “-j 2” option:

 #PBS -l select=1

aprun -n 48 -j 2 ./myMPIProgram

• Hyper-Threading doubles the number of available parallel units per node

at no additional resource cost.

• However, performance effects are highly dependent on the application…

20/01/2014

12

Hyper-Threading Performance

• Can have a positive or negative effect on run times.

• Hyper-Threading is a bad idea for the CFD problem.

• Experimentation is key to determining if this technique would be suitable

for your code.

20/01/2014

0

0.5

1

1.5

2

2.5

3

3.5

1 2 4 8 16 24 48

R
u

n
 T

im
e

 (
s)

MPI Processes

CRAY

CRAY-HTT

13

Process Placement

• ARCHER is a NUMA system – processors access different regions of

memory at different speeds.

• Compute nodes have two NUMA regions – one for each CPU. Hence 12

cores per region.

• It may be desirable to control which NUMA regions processes are

assigned to.

• For example, with hyrbid MPI and OpenMP jobs, it is suggested that

processes are placed such that shared-memory threads in the same

team access the same local memory.

• Can be controlled with aprun flags such as:

• -N [parallel processes per node]

• -S [parallel processes per NUMA region]

• -d [threads per parallel process]

 20/01/2014

14

Parallel Scaling – Number of Processors

• Addition of parallel resources subject to diminishing returns.

• Depends on scalability of underlying algorithms.

• Any sources of inefficiency are compounded at higher numbers of

processes.

• In the CFD example, run time can become dominated by MPI

communications rather than actual processing work.

20/01/2014

CFD Code Iterations: 10,000 Scale Factor: 70

MPI procs Time Speedup Efficiency

1 331.34 1.00 1.00

2 180.30 1.84 0.92

4 132.16 2.51 0.63

8 121.23 2.73 0.34

16 89.02 3.72 0.23

24 58.70 5.64 0.24

15

Parallel Scaling – Problem Size

• Problem scale affects memory interactions – notably cache accesses.

• Additional processors provide additional cache space.

• Can lead to more, or even all, of a program’s working set being available

at the cache level.

• Configurations that achieve this will show a sudden efficiency “spike”.

• 2x the number of MPI processes gives ~9.8x the speed up.

20/01/2014

CFD Code Iterations: 10000 Scale Factor: 70

MPI procs Time Speedup Efficiency

1 331.34 1.00 1.00

48 23.27 14.24 0.30

96 2.37 139.61 1.45

0

100

200

300

400

500

600

700

0 100 200 300 400 500

S
p

e
e

d
u
p

MPI Processes

CFD Speedup on ARCHER

Ideal Parallel Speedup

ScaleFactor 10

ScaleFactor 20

ScaleFactor 50

ScaleFactor 70

ScaleFactor 100

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250 300 350 400 450 500

S
p

e
e

d
u
p

MPI Processes

CFD Speedup on HECToR

Ideal Parallel Speedup

ScaleFactor 10

ScaleFactor 20

ScaleFactor 50

ScaleFactor 70

ScaleFactor 100

ARCHER-ScaleFactor 10 ARCHER-ScaleFactor 20
MPI procs Time Speedup Efficiency MPI procs Time Speedup Efficiency

1 2.91 1.00 1.00 1 11.92 1.00 1.00
2 1.52 1.91 0.96 2 6.21 1.92 0.96
4 0.84 3.47 0.87 4 3.38 3.52 0.88
8 0.47 6.22 0.78 8 1.86 6.41 0.80

16 0.20 14.46 0.90 16 1.00 11.91 0.74
24 0.15 19.92 0.83 24 0.68 17.52 0.73
32 0.15 19.45 0.61 32 0.57 21.03 0.66
48 0.12 23.90 0.50 48 0.37 31.95 0.67
80 0.11 25.63 0.32 80 0.25 48.43 0.61
96 0.10 28.95 0.30 96 0.22 53.17 0.55

120 0.15 19.78 0.16 120 0.20 59.86 0.50
160 0.10 28.36 0.18 160 0.18 67.90 0.42
240 0.08 35.14 0.15 240 0.16 76.77 0.32
480 0.08 35.87 0.07 480 0.16 75.94 0.16

HECToR-ScaleFactor 10 HECToR-ScaleFactor 20
MPI procs Time Speedup Efficiency MPI procs Time Speedup Efficiency

1 8.91 1.00 1.00 1 48.42 1.00 1.00
2 8.01 1.11 0.56 2 44.30 1.09 0.55
4 2.77 3.21 0.80 4 30.68 1.58 0.39
8 1.12 7.99 1.00 8 11.97 4.04 0.51

16 0.61 14.56 0.91 16 3.34 14.49 0.91
24 0.46 19.16 0.80 24 1.71 28.27 1.18
32 0.37 24.28 0.76 32 1.29 37.59 1.17
48 0.29 31.00 0.65 48 0.89 54.28 1.13
80 0.22 39.80 0.50 80 0.62 78.63 0.98
96 0.21 43.06 0.45 96 0.55 88.33 0.92

120 0.19 46.47 0.39 120 0.48 100.57 0.84
160 0.17 51.25 0.32 160 0.41 118.94 0.74
240 0.16 54.58 0.23 240 0.34 143.04 0.60
480 0.15 59.81 0.12 480 0.28 175.50 0.37

ARCHER-ScaleFactor 100 ARCHER-ScaleFactor 150
MPI procs Time Speedup Efficiency MPI procs Time Speedup Efficiency

1 694.66 1.00 1.00 1 1577.00 1.00 1.00
2 378.47 1.84 0.92 2 856.87 1.84 0.92
4 272.62 2.55 0.64 4 617.34 2.55 0.64

8 250.92 2.77 0.35 8 569.49 2.77 0.35
16 184.39 3.77 0.24 16 423.34 3.73 0.23
24 121.45 5.72 0.24 24 280.15 5.63 0.23
32 88.64 7.84 0.24 32 207.53 7.60 0.24
48 56.98 12.19 0.25 48 134.89 11.69 0.24
80 31.66 21.94 0.27 80 77.95 20.23 0.25

96 25.26 27.50 0.29 96 69.59 22.66 0.24
120 13.89 50.02 0.42 120 53.61 29.42 0.25
160 4.68 148.34 0.93 160 37.43 42.14 0.26
240 1.83 379.89 1.58 240 19.89 79.30 0.33
480 1.07 648.81 1.35 480 4.96 317.79 0.66

HECToR-ScaleFactor 100 HECToR-ScaleFactor 150
MPI procs Time Speedup Efficiency MPI procs Time Speedup Efficiency

1 1229.85 1.00 1.00 1 2794.46 1.00 1.00
2 1135.95 1.08 0.54 2 2545.46 1.10 0.55
4 810.08 1.52 0.38 4 1823.64 1.53 0.38

8 803.56 1.53 0.19 8 1803.73 1.55 0.19
16 404.02 3.04 0.19 16 903.92 3.09 0.19
24 270.39 4.55 0.19 24 604.05 4.63 0.19
32 203.32 6.05 0.19 32 454.35 6.15 0.19
48 135.61 9.07 0.19 48 304.80 9.17 0.19

80 80.72 15.24 0.19 80 183.54 15.23 0.19
96 66.10 18.61 0.19 96 152.96 18.27 0.19

120 50.12 24.54 0.20 120 122.20 22.87 0.19
160 31.63 38.88 0.24 160 91.26 30.62 0.19
240 8.23 149.44 0.62 240 58.37 47.87 0.20
480 3.19 385.72 0.80 480 11.20 249.48 0.52

